如果你也在 怎样代写计算线性代数Computational Linear Algebra这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
计算线性代数是在计算机上解决线性代数问题(大型线性方程组、计算矩阵特征值、特征向量等)的数字算法。
statistics-lab™ 为您的留学生涯保驾护航 在代写计算线性代数Computational Linear Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计算线性代数Computational Linear Algebra代写方面经验极为丰富,各种代写计算线性代数Computational Linear Algebra相关的作业也就用不着说。
我们提供的计算线性代数Computational Linear Algebra及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

数学代写|计算线性代数代写Computational Linear Algebra代考|Linear Dependence and Linear Independence
Definition 4.11. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be $n$ scalars $\in \mathbb{R}$ and $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ be $n$ vectors $\in \mathbb{V}{3}$. The linear combination of the $n$ vectors by means of the $n$ scalars is the vector $$ \vec{w}=\lambda{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\ldots, \lambda_{n} \vec{v}{n} . $$ Definition 4.12. Let $\overrightarrow{v{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ be $n$ vectors $\in \mathbb{V}{3}$. These vectors are said linearly dependent if the null vector can be expressed as their linear combination by means of and $n$-tuple of non-null coefficients: $$ \begin{aligned} &\exists \lambda{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}{\ni} \cdot \ &\vec{o}=\lambda{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\ldots+\lambda_{n} \overrightarrow{v_{n}}
\end{aligned}
$$
with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \neq 0,0, \ldots, 0$.
Definition 4.13. Let $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ be $n$ vectors $\in \mathbb{V}{3}$. These vectors are said linearly independent if the null vector can be expressed as their linear combination only by means of null coefficients: $$ \begin{aligned} &\nexists \lambda{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}{ }{\ni}{ }^{\circ} \ &\vec{o}=\lambda{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\ldots+\lambda_{n} \overrightarrow{v_{n}}
\end{aligned}
$$
with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \neq 0,0, \ldots, 0$.
Example 4.7. Let us consider three vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and $\overrightarrow{v_{3}} \in \mathbb{V}{3}$. If at least one tuple $\lambda{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ and $\neq 0,0,0$ such that $\vec{o}=\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\lambda_{3} \overrightarrow{v_{3}}$ can be found, the vectors are linearly dependent. For example if the tuple $-4,5,0$ is such that $\vec{o}=$ $-4 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}}+0 \overrightarrow{v_{3}}$ then the tree vectors are linearly dependent.
数学代写|计算线性代数代写Computational Linear Algebra代考|Matrices of Vectors
Proposition 4.4. Let $\vec{u}, \vec{v} \in \mathbb{V}{3}$ where $$ \begin{aligned} &\vec{u}=\left(u{1}, u_{2}, u_{3}\right) \
&\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)
\end{aligned}
$$
and $\mathbf{A}$ be a $2 \times 3$ matrix whose elements are the components of $\vec{u}$ and $\vec{v}$
$$
\mathbf{A}=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \
v_{1} & v_{2} & v_{3}
\end{array}\right) .
$$
These two vectors are parallel (and thus linearly dependent) if and only if the rank of the matrix $\mathbf{A}$ associated with the corresponding components is $<2: \rho_{\mathbf{A}}<2$.
Proof. If $\vec{u}$ and $\vec{v}$ are parallel they could be expressed as $\vec{u}=\lambda \vec{v}$ with $\lambda \in \mathbb{R}$. Thus,
$$
\begin{array}{r}
\vec{u}=\lambda \vec{v} \Rightarrow \
\Rightarrow u_{1} \overrightarrow{e_{1}}+u_{2} \overrightarrow{e_{2}}+u_{3} \overrightarrow{e_{3}}=\lambda\left(v_{1} \overrightarrow{e_{1}}+v_{2} \overrightarrow{e_{2}}+v_{3} \overrightarrow{e_{3}}\right) .
\end{array}
$$
Since two vectors are the equal if and only if they have the same components,
$$
\begin{gathered}
u_{1}=\lambda v_{1} \
u_{2}=\lambda v_{2} \
u_{3}=\lambda v_{3} .
\end{gathered}
$$
Since the two rows are proportional, there is no non-singular order 2 submatrix. Thus $\rho_{\mathbf{A}}<2$.
If $\rho_{\mathbf{A}}<2$, every two submatrix has null determinant. This can happen in the following cases.
- A row is composed of zeros. This means that one vector is the null vector $\vec{o}$, e.g.
$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & 0 & 0 \
v_{1} & v_{2} & v_{3}
\end{array}\right) \text {. }
$$
Since every vector is parallel to $\vec{o}$, the vectors are parallel.
数学代写|计算线性代数代写Computational Linear Algebra代考|Complex Numbers
As mentioned in Chap. 1, for a given set and an operator applied to its elements, if the result of the operation is still an element of the set regardless of the input of the operator, then the set is said closed with respect to that operator. For example it is easy to verify that $\mathbb{R}$ is closed with respect to the sum as the sum of two real numbers is certainly a real number. On the other hand, $\mathbb{R}$ is not closed with respect to the square root operation. More specifically, if a square root of a negative number has to be calculated the result is not determined and is not a real number. In order to represent these numbers Gerolamo Cardano in the sixteenth century introduced the concept of Imaginary numbers, see [11], by defining the imaginary unit $j$ as the square root of $-1: j=\sqrt{-1}$. This means that the square roots of negative numbers can be represented.
Example 5.1. $\sqrt{-9}=j 3$.
Imaginary numbers compose a set of numbers represented by the symbol I. The basic arithmetic operations can be applied to imaginary numbers.
- sum: $j a+j b=j(a+b)$
- difference: $j a-j b=j(a-b)$
- product: $j a j b=-a b$
- division: $\frac{j a}{j b}=\frac{a}{b}$
Example 5.2. Let us consider the imaginary numbers $j 2$ and $j 5$. It follows that
$$
\begin{aligned}
&j 2+j 5=j 7 \
&j 2-j 5=-j 3 \
&j 2 j 5=-10 \
&\frac{j 2}{j 5}=\frac{2}{5} .
\end{aligned}
$$

计算线性代数代考
数学代写|计算线性代数代写Computational Linear Algebra代考|Linear Dependence and Linear Independence
定义 4.11。让 $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ 是 $n$ 标量 $\in \mathbb{R}$ 和 $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ 是 $n$ 矢量图 $\in \mathbb{V} 3$. 的线性组合 $n$ 向量通过 $n$ 标量是向量
$$
\vec{w}=\lambda \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\ldots, \lambda_{n} \vec{v} n
$$
定义 4.12。让 $\overrightarrow{v 1}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ 是 $n$ 矢量图 $\in \mathbb{V} 3$. 如果零向量可以表示为它们的线性组合,则这些向量被称为线性相关 和 $n$ – 非零系数元组:
$$
\exists \lambda 1, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R} \ni \cdot \quad \vec{o}=\lambda 1 \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\ldots+\lambda_{n} \overrightarrow{v_{n}}
$$
和 $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \neq 0,0, \ldots, 0$.
定义 4.13。让 $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ 是 $n$ 矢量图 $\in \mathbb{V} 3$. 如果空向量只能通过空系数表示为它们的线性组合,则称这些向量是线性无关的:
$$
\nexists \lambda 1, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R} \ni^{\circ} \quad \vec{o}=\lambda 1 \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\ldots+\lambda_{n} \overrightarrow{v_{n}}
$$
和 $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \neq 0,0, \ldots, 0$.
例 4.7。让我们考虑三个向量 $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ ,和 $\overrightarrow{v_{3}} \in \mathbb{V} 3$. 如果至少有一个元组 $\lambda 1, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ 和 $\neq 0,0,0$ 这样 $\vec{o}=\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\lambda_{3} \overrightarrow{v_{3}}$ 可以发 现,向量是线性相关的。例如,如果元组 $-4,5,0$ 是这样的 $\vec{o}=-4 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}}+\overrightarrow{0 v_{3}}$ 那么树向量是线性相关的。
数学代写|计算线性代数代写Computational Linear Algebra代考|Matrices of Vectors
提案 4.4。让 $\vec{u}, \vec{v} \in \mathbb{V} 3$ 在哪里
$$
\vec{u}=\left(u 1, u_{2}, u_{3}\right) \quad \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)
$$
和 $\mathbf{A}$ 做一个 $2 \times 3$ 矩阵,其元素是 $\vec{u}$ 和 $\vec{v}$
这两个向量是平行的 (因此线性相关) 当且仅当矩阵的秩 $\mathbf{A}$ 与相应组件相关联的是 $<2: \rho_{\mathbf{A}}<2$. 证明。如果 $\vec{u}$ 和 $\vec{v}$ 是平行的,它们可以表示为 $\vec{u}=\lambda \vec{v}$ 和 $\lambda \in \mathbb{R}$. 因此,
$$
\vec{u}=\lambda \vec{v} \Rightarrow \Rightarrow u_{1} \overrightarrow{e_{1}}+u_{2} \overrightarrow{e_{2}}+u_{3} \overrightarrow{e_{3}}=\lambda\left(v_{1} \overrightarrow{e_{1}}+v_{2} \overrightarrow{e_{2}}+v_{3} \overrightarrow{e_{3}}\right)
$$
由于两个向量相等当且仅当它们具有相同的分量,
$$
u_{1}=\lambda v_{1} u_{2}=\lambda v_{2} u_{3}=\lambda v_{3}
$$
由于两行成比例,因此不存在非奇异阶 2 子矩阵。因此 $\rho_{\mathbf{A}}<2$.
如果 $\rho_{\mathbf{A}}<2$ ,每两个子矩阵都有空行列式。这可能在以下情况下发生。
- 一行由零组成。这意味着一个向量是空向量 $\vec{o}$ ,例如
$$
\mathbf{A}=\left(\begin{array}{llllll}
0 & 0 & 0 & v_{1} & v_{2} & v_{3}
\end{array}\right) .
$$
因为每个向量都平行于 $\vec{o}$ ,向量是平行的。
数学代写|计算线性代数代写Computational Linear Algebra代考|Complex Numbers
如第 1 章所述。1,对于给定的集合和应用于其元素的运算符,如果无论运算符的输入如何,运算的结果仍然是该集合的一个元素,则该 集合相对于该运算符而言是封闭的。例如,很容易验证 $\mathbb{R}$ 相对于和是封闭的,因为两个实数之和肯定是实数。另一方面, $\mathbb{R}$ 关于平方根运 算不是封闭的。更具体地说,如果必须计算负数的平方根,则结果无法确定并且不是实数。为了表示这些数字,Gerolamo Cardano 在 16 世纪引入了虚数的概念,参见 [11],通过定义虚数单位 $j$ 作为平方根 $-1: j=\sqrt{-1}$. 这意味着可以表示负数的平方根。 例 5.1。 $\sqrt{-9}=j 3$.
虚数由符号 | 表示的一组数字组成。基本的算术运算可以应用于虚数。
- 和: $j a+j b=j(a+b)$
- 区别: $j a-j b=j(a-b)$
- 产品: $j a j b=-a b$
- 分配: $\frac{j a}{j b}=\frac{a}{b}$
例 5.2。让我们考虑虚数 $j 2$ 和 $j 5$. 它遵循
$$
j 2+j 5=j 7 \quad j 2-j 5=-j 3 j 2 j 5=-10 \quad \frac{j 2}{j 5}=\frac{2}{5}
$$

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
R语言代写 | 问卷设计与分析代写 |
PYTHON代写 | 回归分析与线性模型代写 |
MATLAB代写 | 方差分析与试验设计代写 |
STATA代写 | 机器学习/统计学习代写 |
SPSS代写 | 计量经济学代写 |
EVIEWS代写 | 时间序列分析代写 |
EXCEL代写 | 深度学习代写 |
SQL代写 | 各种数据建模与可视化代写 |