assignmentutor™您的专属作业导师

MATLAB是一个编程和数值计算平台，被数百万工程师和科学家用来分析数据、开发算法和创建模型。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写matlab方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写matlab代写方面经验极为丰富，各种代写matlab相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|matlab代写|HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

In our drive for more efficient methods to solve higher-order, linear, ordinary differential equations, let us examine the simplest possible case of a homogeneous differential equation with constant coefficients:
$$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2} y^{\prime \prime}+a_{1} \frac{d y}{d x}+a_{0} y=0 .$$
Although we could explore Equation 2.1.1 in its most general form, we will begin by studying the second-order version, namely
$$a y^{\prime \prime}+b y^{\prime}+c y=0$$
since it is the next step up the ladder in complexity from first-order ordinary differential equations.

Motivated by the fact that the solution to the first-order ordinary differential equation $y^{\prime}+a y=0$ is $y(x)=C_{1} e^{-a x}$, we make the educated guess that the solution to Equation $2.1 .2$ is $y(x)=A e^{m x}$. Direct substitution into Equation 2.1.2 yields
$$\left(a m^{2}+b m+c\right) A e^{m x}=0 .$$

The constant $A$ cannot equal 0 because that would give $y(x)=0$ and we would have a trivial solution. Furthermore, since $e^{m x} \neq 0$ for arbitrary $x$, Equation $2.1 .3$ simplifies to
$$a m^{2}+b m+c=0 .$$
Equation 2.1.4 is called the auxiliary or characteristic equation. At this point we must consider three separate cases.

## 数学代写|matlab代写|SIMPLE HARMONIC MOTION

Second-order, linear, ordinary differential equations often arise in mechanical or electrical problems. The purpose of this section is to illustrate how the techniques that we just derived may be applied to these problems.

We begin by considering the mass-spring system illustrated in Figure $2.2 .1$ where a mass $m$ is attached to a flexible spring suspended from a rigid support. If there were no spring, then the mass would simply fall downward due to the gravitational force $m g$. Because there is no motion, the gravitational force must be balanced by an upward force due to the presence of the spring. This upward force is usually assumed to obey Hooke’s law, which states that the restoring force is opposite to the direction of elongation and proportional to the amount of elongation. Mathematically the equilibrium condition can be expressed $m g=k s$.

Consider now what happens when we disturb this equilibrium. This may occur in one of two ways: We could move the mass either upward or downward and then release it. Another method would be to impart an initial velocity to the mass. In either case, the motion of the mass/spring system would be governed by Newton’s second law, which states that the acceleration of the mass equals the imbalance of the forces. If we denote the downward displacement of the mass from its equilibrium position by positive $x$, then
$$m \frac{d^{2} x}{d t^{2}}=-k(s+x)+m g=-k x,$$
since $k s=m g$. After dividing Equation $2.2 .1$ by the mass, we obtain the second-order differential equation
$$\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0,$$
or
$$\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0,$$
where $\omega^{2}=k / m$ and $\omega$ is the circular frequency. Equation $2.2 .3$ describes simple harmonic motion or free undamped motion. The two initial conditions associated with this differential equation are
$$x(0)=\alpha, \quad x^{\prime}(0)=\beta .$$

# matlab代写

## 数学代写|matlab代写|HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

$$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2} y^{\prime \prime}+a_{1} \frac{d y}{d x}+a_{0} y=0 .$$

$$a y^{\prime \prime}+b y^{\prime}+c y=0$$

$$\left(a m^{2}+b m+c\right) A e^{m x}=0 .$$

$$a m^{2}+b m+c=0 .$$

## 数学代写|matlab代写|SIMPLE HARMONIC MOTION

$$m \frac{d^{2} x}{d t^{2}}=-k(s+x)+m g=-k x$$

$$\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0,$$

$$\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0$$

$$x(0)=\alpha, \quad x^{\prime}(0)=\beta .$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师