assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写广义相对论General relativity方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写广义相对论General relativity代写方面经验极为丰富，各种代写广义相对论General relativity相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|广义相对论代写General relativity代考|Global Positioning System

The global positioning system is in wide use, and GR provides an important correction. Before worrying about the role played by GR, let’s look at a simple-minded system where only SR needs to be worried about.

Imagine our observer does not know where he is, though he is actually at $d z_{0}$. Overhead at height $h \ll R_{e}$, many planes fly with speed $V$ in the $z$-direction. The planes are at rest with respect to each other. At high frequency $\nu$, they broadcast their time and position $\left(d t^{\prime}, d z^{\prime}\right)$. These are connected to times and positions in the observer’s frame by the Lorentz transform,
\begin{aligned} \gamma &=\left(1-V^{2}\right)^{-1 / 2} \approx 1+V^{2} / 2 \ d t &=\gamma\left(d t^{\prime}+V d z^{\prime}\right), \quad d z=\gamma\left(d z^{\prime}+V d t^{\prime}\right) \end{aligned}
The time of flight $d T$ of the electromagnetic wave to the observer is $d T=\left(h^{2}+\left[d z-d z_{0}\right]^{2}\right)^{1 / 2}$, and the time of arrival at the observer is $d t_{0}=d T+d t$. The observer has a system that interprets the signals so that two simultaneously arriving signals are deduced. Of course, this means that the two signals were not emitted simultaneously by the planes. Also simultaneous arrival really means arrival within a narrow time window, and that depends on the accuracy of your device. If two planes provide simultaneous arrivals, then
\begin{aligned} d T_{A}+d t_{A} &=d T_{B}+d t_{B} \ \left(h^{2}+\left[d z_{A}-d z_{0}\right]^{2}\right)^{1 / 2}+d t_{A} &=\left(h^{2}+\left[d z_{B}-d z_{0}\right]^{2}\right)^{1 / 2}+d t_{B} \end{aligned}

## 物理代写|广义相对论代写General relativity代考|Tensor Equations

In a fully relativistic theory, energy is just one component of the momentum vector. Momentum and energy conservation is just conservation of each component of that vector. Suppose it holds in one frame where, for example, a muon, as illustrated in Fig. 2.6, decays into three lighter particles $\mu \rightarrow$ $\nu \bar{\nu} e$. In the muon rest frame $\mathrm{O}$, conservation of momentum is as follows:
$$0=P^{\bar{\beta}}(I)-P^{\bar{\beta}}(F)=P^{\bar{\beta}}(\mu)-P^{\bar{\beta}}(\nu)-P^{\bar{\beta}}(\bar{\nu})-P^{\bar{\beta}}(e) .$$
The Lorentz transform is applied to every term in the above equation. This yields the momenta in a frame $\mathrm{O}^{\prime}$, where the muon is moving. It is obvious that momentum conservation holds in $\mathrm{O}^{\prime}$,
$$0=x^{\bar{\alpha}^{\prime}},{ }_{\bar{\beta}}\left(P^{\bar{\beta}}(I)-P^{\bar{\beta}}(F)\right)=P^{\bar{\alpha}^{\prime}}(I)-P^{\bar{\alpha}^{\prime}}(F) .$$
It is necessary to write physical law as a tensor equation, as in Eq. (2.33). Then, if the law holds for one observer, it holds for all. Such a decay is always handled in SR, hence the bars over momentum indexes. The earth is freely falling in the metric due mainly to the sun. As will be seen, it is an inertial system. In the weak gravity of an earth laboratory, there is no noticeable earthly gravitational effect on these particles. Though the decay is handled in $\mathrm{SR}$, the general principle holds for all frames.

Other vectors are easy to define. For example, one could define a force vector $F^{\mu} \equiv \frac{d P^{\mu}}{d \tau}$. The force components on each of two, at rest, charged particles can be calculated. After a Lorentz transform, to a frame in which the particles are moving, one notes magnetic effects enter the scene. In this way, the laws of electromagnetism can be derived from Coulomb’s law and SR. Such material is useful for an electrodynamics course, but not pertinent for further study of GR.

# 广义相对论代考

## 物理代写|广义相对论代写General relativity代考|Global Positioning System

$$\gamma=\left(1-V^{2}\right)^{-1 / 2} \approx 1+V^{2} / 2 d t \quad=\gamma\left(d t^{\prime}+V d z^{\prime}\right), \quad d z=\gamma\left(d z^{\prime}+V d t^{\prime}\right)$$

$$d T_{A}+d t_{A}=d T_{B}+d t_{B}\left(h^{2}+\left[d z_{A}-d z_{0}\right]^{2}\right)^{1 / 2}+d t_{A} \quad=\left(h^{2}+\left[d z_{B}-d z_{0}\right]^{2}\right)^{1 / 2}+d t_{B}$$

## 物理代写|广义相对论代写General relativity代考|Tensor Equations

$$0=P^{\bar{\beta}}(I)-P^{\bar{\beta}}(F)=P^{\bar{\beta}}(\mu)-P^{\bar{\beta}}(\nu)-P^{\bar{\beta}}(\bar{\nu})-P^{\bar{\beta}}(e) .$$

$$0=x^{\bar{\alpha}^{\prime}},_{\bar{\beta}}\left(P^{\bar{\beta}}(I)-P^{\bar{\beta}}(F)\right)=P^{\bar{\alpha}^{\prime}}(I)-P^{\bar{\alpha}^{\prime}}(F) .$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师