如果你也在 怎样代写最优控制optimal control这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

最优控制是为一个动态系统确定一段时期内的控制和状态轨迹,以使性能指数最小化的过程。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写最优控制optimal control方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写最优控制optimal control代写方面经验极为丰富,各种代写最优控制Soptimal control相关的作业也就用不着说。

我们提供的最优控制optimal control及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|最优控制作业代写optimal control代考|AA203

统计代写|最优控制作业代写optimal control代考|Derivation of the Adjoint Equation

The derivation of the adjoint equation proceeds from the HJB equation (2.19), and is similar to those in Fel’dbaum (1965) and Kirk (1970). Note that, given the optimal path $x^{}$, the optimal control $u^{}$ maximizes the left-hand side of $(2.19)$, and its maximum value is zero. We now consider small perturbations of the values of the state variables in a neighborhood of the optimal path $x^{}$. Thus, let $$ x(t)=x^{}(t)+\delta x(t)
$$
where $|\delta x(t)|<\varepsilon$ for a small positive $\varepsilon$.

We now consider a ‘fixed’ time instant $t$. We can then write $(2.19)$ as
$$
\begin{aligned}
0 &=H\left[x^{}(t), u^{}(t), V_{x}\left(x^{}(t), t\right), t\right]+V_{t}\left(x^{}(t), t\right) \
& \geq H\left[x(t), u^{}(t), V_{x}(x(t), t), t\right]+V_{t}(x(t), t) . \end{aligned} $$ To explain, we note from (2.19) that the left-hand side of $\geq$ in (2.23) equals zero. The right-hand side can attain the value zero only if $u^{}(t)$ is also an optimal control for $x(t)$. In general, for $x(t) \neq x^{}(t)$, this will not be so. From this observation, it follows that the expression on the right-hand side of (2.23) attains its maximum (of zero) at $x(t)=x^{}(t)$. Furthermore, $x(t)$ is not explicitly constrained. In other words, $x^{}(t)$ is an unconstrained local maximum of the right-hand side of (2.23), so that the derivative of this expression with respect to $x$ must vanish at $x^{}(t)$, i.e.,
$$
H_{x}\left[x^{}(t), u^{}(t), V_{x}\left(x^{}(t), t\right), t\right]+V_{t x}\left(x^{}(t), t\right)=0,
$$
provided the derivative exists, and for which, we must further assume that $V$ is a twice continuously differentiable function of its arguments. With $H=F+V_{x} f$ from (2.17) and (2.18), we obtain
$$
H_{x}=F_{x}+V_{x} f_{x}+f^{T} V_{x x}=F_{x}+V_{x} f_{x}+\left(V_{x x} f\right)^{T}
$$
by using $g=V_{x}$ in the identity (1.15). Substituting this in (2.24) and recognizing the fact that $V_{x x}=\left(V_{x x}\right)^{T}$, we obtain
$$
F_{x}+V_{x} f_{x}+f^{T} V_{x x}+V_{t x}=F_{x}+V_{x} f_{x}+\left(V_{x x} f\right)^{T}+V_{t x}=0,
$$
where the superscript ${ }^{T}$ denotes the transpose operation. See (1.16) or Exercise $1.10$ for further explanation.

统计代写|最优控制作业代写optimal control代考|The Maximum Principle

The necessary conditions for $u^{}(t), t \in[0, T]$, to be an optimal control are: $$ \left{\begin{array}{l} \dot{x}^{}=f\left(x^{}, u^{}, t\right), x^{}(0)=x_{0}, \ \dot{\lambda}=-H_{x}\left[x^{}, u^{}, \lambda, t\right], \lambda(T)=S_{x}\left(x^{}(T), T\right), \
H\left[x^{}, u^{}, \lambda, t\right] \geq H\left[x^{*}, u, \lambda, t\right], \forall u \in \Omega(t), t \in[0, T] .
\end{array}\right.
$$

It should be emphasized that the state and the adjoint arguments of the Hamiltonian are $x^{}(t)$ and $\lambda(t)$ on both sides of the Hamiltonian maximizing condition in (2.31), respectively. Furthermore, $u^{}(t)$ must provide a global maximum of the Hamiltonian $H\left[x^{*}(t), u, \lambda(t), t\right]$ over $u \in \Omega(t)$. For this reason the necessary conditions in (2.31) are called the maximum principle.

Note that in order to apply the maximum principle, we must simultaneously solve two sets of differential equations with $u^{}$ obtained from the Hamiltonian maximizing condition in $(2.31)$. With the control variable $u^{}$ so obtained, the state equation for $x^{}$ is given with the initial value $x_{0}$, and the adjoint equation for $\lambda$ is specified with a condition on the terminal value $\lambda(T)$. Such a system of equations, where initial values of some variables and final values of other variables are specified, is called a two-point boundary value problem (TPBVP). The general solution of such problems can be very difficult; see Bryson and Ho (1975), Roberts and Shipman (1972), and Feichtinger and Hartl (1986). However, there are certain special cases which are easy. One such is the case in which the adjoint equation is independent of the state and the control variables; here we can solve the adjoint equation first, then get the optimal control $u^{}$, and then solve for $x^{*}$.

Note also that if we can solve the Hamiltonian maximizing condition for an optimal control function in closed form $u^{}(x, \lambda, t)$ so that $$ u^{}(t)=u^{}\left[x^{}(t), \lambda(t), t\right]
$$
then we can substitute this into the state and adjoint equations to get the TPBVP just in terms of a set of differential equations, i.e.,
$$
\left{\begin{array}{l}
\dot{x}^{}=f\left(x^{}, u^{}\left(x^{}, \lambda, t\right), t\right), x^{}(0)=x_{0}, \ \dot{\lambda}=-H_{x}\left(x^{}, u^{}\left(x^{}, \lambda, t\right), \lambda, t\right), \lambda(T)=S_{x}\left(x^{*}(T), T\right) .
\end{array}\right.
$$

统计代写|最优控制作业代写optimal control代考|AA203

最优控制代考

统计代写|最优控制作业代写optimal control代考|Derivation of the Adjoint Equation

伴随方程的推导源自 HJB 方程 (2.19),类似于 Fel’dbaum (1965) 和 Kirk (1970) 中的推导。注意,给定最优路径 $x$ ,最优控制 $u$ 最大化左手 边(2.19),其最大值为零。我们现在考虑最优路径邻域中状态变量值的小扰动 $x$. 因此,让
$$
x(t)=x(t)+\delta x(t)
$$
在哪里 $|\delta x(t)|<\varepsilon$ 对于一个小的阳性 $\varepsilon$.
我们现在考虑一个”固定的“时间瞬间 $t$. 然后我们可以写 $(2.19)$ 作为
$$
0=H\left[x(t), u(t), V_{x}(x(t), t), t\right]+V_{t}(x(t), t) \quad \geq H\left[x(t), u(t), V_{x}(x(t), t), t\right]+V_{t}(x(t), t) .
$$
为了解释,我们从 (2.19) 中注意到, $\geq$ 在 $(2.23)$ 中等于零。只有当 $u(t)$ 也是最优控制 $x(t)$. 一般来说,对于 $x(t) \neq x(t)$ ,这不会是这样。 从这个观察可以看出,(2.23) 右边的表达式在 $x(t)=x(t)$. 此外, $x(t)$ 没有明确限制。换句话说, $x(t)$ 是 $(2.23)$ 右侧的无约束局部最大 值,因此该表达式关于 $x$ 糹须消失在 $x(t)$ ,那是,
$$
H_{x}\left[x(t), u(t), V_{x}(x(t), t), t\right]+V_{t x}(x(t), t)=0,
$$
假设存在导数,并且为此,我们必须进一步假设 $V$ 是其参数的两次连续可微函数。和 $H=F+V_{x} f$ 从 (2.17) 和 (2.18),我们得到
$$
H_{x}=F_{x}+V_{x} f_{x}+f^{T} V_{x x}=F_{x}+V_{x} f_{x}+\left(V_{x x} f\right)^{T}
$$
通过使用 $g=V_{x}$ 在身份 (1.15) 中。将其代入 (2.24) 并认识到以下事实: $V_{x x}=\left(V_{x x}\right)^{T}$ , 我们获得
$$
F_{x}+V_{x} f_{x}+f^{T} V_{x x}+V_{t x}=F_{x}+V_{x} f_{x}+\left(V_{x x} f\right)^{T}+V_{t x}=0
$$
上标在哪里 ${ }^{T}$ 表示转置操作。见 $(1.16)$ 或练习1.10进一步解释。

统计代写|最优控制作业代写optimal control代考|The Maximum Principle

必要条件 $u(t), t \in[0, T]$ ,作为最优控制是: $\$ \$ \backslash$ left{
$$
\dot{x}=f(x, u, t), x(0)=x_{0}, \dot{\lambda}=-H_{x}[x, u, \lambda, t], \lambda(T)=S_{x}(x(T), T), H[x, u, \lambda, t] \geq H\left[x^{}, u, \lambda, t\right], \forall u \in \Omega(t), t \in[0, T] . $$ 正确的。 $\$ \$$ 应该强调的是,哈密顿量的状态和伴随论证是 $x(t)$ 和 $\lambda(t)$ 分别在 (2.31) 中的哈密顿最大化条件的两侧。此外, $u(t)$ 必须提供哈密顿量的 全局最大值 $H\left[x^{}(t), u, \lambda(t), t\right]$ 超过 $u \in \Omega(t)$. 因此,(2.31) 中的必要条件被称为最大原理。
请注意,为了应用极大值原理,我们必须同时求解两组微分方程 $u$ 从哈密顿量最大化条件中获得 $(2.31)$. 与控制变量 $u$ 如此得到,状态方程 为 $x$ 以初始值给出 $x_{0}$ ,以及伴随方程 $\lambda$ 用终端值的条件指定 $\lambda(T)$. 这样一个方程组,其中指定了一些变量的初始值和其他变量的最终值, 称为两点边值问题 (TPBVP)。此类问题的一般解决方案可能非常困难;参见 Bryson 和 Ho (1975)、Roberts 和 Shipman (1972) 以及

Feichtinger 和 Hartl (1986)。但是,有些特殊情况很容易。其中一种情况是伴随方程独立于状态和控制变量。这里我们可以先求解伴随方 程,然后得到最优控制 $u$ ,然后求解 $x^{}$. 还要注意,如果我们可以解决封闭形式的最优控制函数的哈密顿最大化条件 $u(x, \lambda, t)$ 以便 $$ u(t)=u[x(t), \lambda(t), t] $$ 然后我们可以将其代入状态和伴随方程,以仅根据一组微分方程得到 TPBVP,即 $\$ \$$ Veft { $$ \dot{x}=f(x, u(x, \lambda, t), t), x(0)=x_{0}, \dot{\lambda}=-H_{x}(x, u(x, \lambda, t), \lambda, t), \lambda(T)=S_{x}\left(x^{}(T), T\right)
$$
、正确的。
$\$ \$$

统计代写|最优控制作业代写optimal control代考 请认准assignmentutor™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写