如果你也在 怎样代写生物统计biostatistics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
生物统计学是将统计技术应用于健康相关领域的科学研究,包括医学、生物学和公共卫生,并开发新的工具来研究这些领域。
statistics-lab™ 为您的留学生涯保驾护航 在代写生物统计biostatistics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写生物统计biostatistics代写方面经验极为丰富,各种生物统计biostatistics相关的作业也就用不着说。
我们提供的生物统计biostatistics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|生物统计代写biostatistics代考|Two Special cases
An important special case of SUE distribution is the multivariate unified skewnormal distribution (SUN). Specifically, if the density generator function in (5) is $h^{(m+n)}(u)=(2 \pi)^{-(m+n) / 2} \exp (-u / 2)(u \geq 0)$, we obtain the SUN distribution, denoted by $\mathbf{X} \sim S U N_{n, m}(\theta)$, with pdf (see Arellano-Valle and Azzalini 2006)
$$
g_{S U N_{n, m}}(\mathbf{x} ; \boldsymbol{\theta})=\frac{\phi_{n}(\mathbf{x} ; \boldsymbol{\xi}, \boldsymbol{\Omega})}{\Phi_{m}(\boldsymbol{\eta} ; \boldsymbol{\Gamma})} \times \Phi_{m}\left(\eta+\boldsymbol{\Lambda}^{\top} \boldsymbol{\Omega}^{-1}(\mathbf{x}-\boldsymbol{\xi}) ; \boldsymbol{\Gamma}-\boldsymbol{\Lambda}^{\top} \boldsymbol{\Omega}^{-1} \boldsymbol{\Lambda}\right)
$$
where $\phi_{n}(; ; \boldsymbol{\xi}, \boldsymbol{\Omega})$ denotes the pdf of $N_{n}(\xi, \boldsymbol{\Omega})$ and $\Phi_{m}(\cdot ; \boldsymbol{\Gamma})$ denotes the cdf of $N_{m}(\mathbf{0}, \Gamma)$
Another important special case of SUE distribution is the multivariate unified skew-t (SUT) distribution. Specifically, if $h^{(m+n)}(u)=\frac{\Gamma\left(\frac{v+m+n}{2}\right)}{\Gamma\left(\frac{v}{2}\right)(v \pi)^{\frac{m+n}{2}}}\left(1+\frac{u}{v}\right)^{-(v+m+n) / 2}$, we obtain the multivariate unified skew-t (SUT) distribution, denoted by $\mathbf{Y} \sim S U T_{n, m}(\theta, v)$, with pdf
$$
\begin{aligned}
&g_{S U T_{n, m}}(\mathbf{x} ; \boldsymbol{\theta}, v)=\frac{t_{n}(\mathbf{x} ; \boldsymbol{\xi}, \boldsymbol{\Omega}, v)}{T_{m}(\eta ; \boldsymbol{\Gamma}, v)} \
&\quad \times T_{m}\left(\eta+\mathbf{\Lambda}^{\top} \mathbf{\Omega}^{-1}(\mathbf{x}-\boldsymbol{\xi}) ; \frac{v+(\mathbf{x}-\boldsymbol{\xi})^{\top} \mathbf{\Omega}^{-1}(\mathbf{x}-\boldsymbol{\xi})}{v+n}\left(\boldsymbol{\Gamma}-\boldsymbol{\Lambda}^{\top} \mathbf{\Omega}^{-1} \boldsymbol{\Lambda}\right), v+n\right)
\end{aligned}
$$
where $t_{n}(\because ; \xi, \boldsymbol{\Omega}, \nu)$ denotes the pdf of multivariate student- $t$ distribution with location vector $\xi$, dispersion matrix $\boldsymbol{\Omega}$ and degrees of freedom $v$, and $T_{m}(-; \boldsymbol{\Gamma}, \nu)$ denotes the corresponding cdf of $t_{m}(\cdot ; \mathbf{0}, \boldsymbol{\Gamma}, v)$.
Using the results in Lemma 2, we can obtain the marginal and conditional distributions of SUT distribution as presented in the following corollary.
统计代写|生物统计代写biostatistics代考|Concomitant Vector of Order Statistics
Let $\mathbf{X}{1}, \ldots, \mathbf{X}{n}$ be random vectors of the same dimension $p$ having elliptical distribution in (1), and let for $i=1,2, \ldots, n, Y_{i}=\mathbf{a}^{\top} \mathbf{X}{i}$ be a linear combination of these vectors, where $\mathbf{a}=\left(a{1}, \ldots, a_{p}\right)^{\top} \in R^{p}$ and $\mathbf{a} \neq \mathbf{0}=(0, \ldots, 0)^{\top}$. Further, let $\mathbf{Y}{(n)}=\left(Y{(1)}, \ldots, Y_{(n)}\right)^{\top}$, with $Y_{(1)}<\cdots<Y_{(n)}$, denote the vector of order statistics arising from $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$, and $\mathbf{X}{[r]}$ denote the vector of concomitants corresponding to the $r$ th order statistic $Y{(r)}$.
In this section, we establish a mixture representation for the distribution of $\mathbf{X}{[r]}$ in terms of univariate SUE distribution. For this purpose, we shall first introduce the following notation. Let $1 \leq r \leq n$ be an integer, and for integers $1 \leq j{1}<\cdots<$ $j_{r-1} \leq n-1$, let $\mathbf{S}{j{1} \ldots j_{r-1}}=\operatorname{diag}\left(s_{1}, \ldots, s_{n-1}\right)$ be a $(n-1) \times(n-1)$ diagonal matrix where
$$
s_{i}=\left{\begin{array}{cl}
1 & i=j_{1}, \ldots, j_{r-1} \
-1 & \text { otherwise. }
\end{array}\right.
$$
In the special cases, we have $\mathbf{S}{j{1} \ldots j_{n-1}}=\mathbf{I}{n-1}$ and $\mathbf{S}{j_{0}}=-\mathbf{I}{n-1}$. Furthermore, let, for $i=1, \ldots, n$, the random vector $\mathbf{Y}=\left(Y{1}, \ldots, Y_{n}\right)^{\top}$ be partitioned as
$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{i} \
\mathbf{Y}{-i} \end{array}\right) $$ where we use the notation $\mathbf{Y}{-i}$ for the vector obtained from $\mathbf{Y}$ by deleting its $i$ th component.
Now, let us introduce the following partitions for $\mu_{\mathbf{Y}}, \Sigma_{\mathbf{Y Y}}$ and $\Sigma_{\mathbf{Y X}}$ :
$$
\mu_{\mathbf{Y}}=\left(\begin{array}{c}
\mu_{Y_{i}} \
\mu_{\mathbf{Y}{-i}} \end{array}\right), \quad \Sigma{\mathbf{Y Y}}=\left(\begin{array}{cc}
\sigma_{Y_{i} Y_{i}} & \sigma_{\mathbf{Y}{-i} Y{i}}^{\top} \
\sigma_{\mathbf{Y}{-i} Y{i}} & \boldsymbol{\Sigma}{\mathbf{Y}{-i} \mathbf{Y}{-i}} \end{array}\right), \quad \boldsymbol{\Sigma}{\mathbf{Y} \mathbf{X}{i}}=\left(\begin{array}{c} \sigma{Y_{i} \mathbf{X}{i}} \ \sigma{\mathbf{Y}{-i} \mathbf{X}{i}}
\end{array}\right)
$$
We now derive the exact distribution of $\mathbf{X}_{[r]}$, for $r=1,2, \ldots, n$, in the following theorem.
统计代写|生物统计代写biostatistics代考|Multivariate Normal Case
In the special case of the multivariate normal distribution, from the general mixture form in Theorem 2 , we get the following corollary.
Corollary 5 If $\left(\begin{array}{c}\boldsymbol{X}{1} \ \vdots \ \boldsymbol{X}{n}\end{array}\right) \sim N_{n p}\left(\boldsymbol{\mu}=\left(\begin{array}{c}\mu_{1} \ \vdots \ \boldsymbol{\mu}{n}\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{ccc}\boldsymbol{\Sigma}{11} & \cdots & \boldsymbol{\Sigma}{1 n} \ \vdots & \ddots & \vdots \ \boldsymbol{\Sigma}{n 1} & \cdots & \boldsymbol{\Sigma}{n n}\end{array}\right)\right)$, then the cdf of $X{[r]}$, for $\boldsymbol{t} \in \mathbb{R}^{p}$, is given by
$$
F_{\mathrm{Irl}}(\boldsymbol{t} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{\substack{i=1 \ j_{1}<\ldots<j_{r-1} \leq j_{k} \leq n-1}}^{n} \pi_{i j_{1}, \ldots, j_{r-1}} G_{S U N_{p, n-1}}\left(\boldsymbol{t} ; \theta_{i j_{1}, \ldots, j_{r-1}}\right)
$$
where $G_{S U N_{p, n} 1}(\cdot ; \theta)$ denotes the cdf of $S U N_{p, n-1}(\theta)$, and the mixing probabilities are
$$
\pi_{i j_{1}, \ldots, j_{r-1}}=\Phi_{n-1}\left(\eta_{i j_{1}, \ldots, j_{r-1}} ; \boldsymbol{\Gamma}{i j{1}, \ldots, j_{r-1}}\right),
$$
and $\theta_{i j_{1}, \ldots, j_{r-1}}$ is as given in Theorem $2 .$
In addition, upon using the mean of $S U N_{n, m}(\theta)$ presented in Theorem 1 , the mean of $X_{[r]}$ can be readily obtained as
$$
E\left(\boldsymbol{X}{[r]}\right)=\sum{i=1}^{n} \sum_{\substack{j_{1}<\cdots<j_{1}-1 \ 1 \leq j_{k} \leq n-1}} \pi_{i j_{1}, \ldots, j_{r-1}} \mu_{i j_{1}, \ldots, j_{r-1}},
$$
where $\mu_{i j_{1}, \ldots, j_{r-1}}$ denotes the mean of $S U N_{p, n-1}\left(\theta_{i j_{1}, \ldots, j_{r-1}}\right)$.

生物统计代考
统计代写|生物统计代写biostatistics代考|Two Special cases
SUE 分布的一个重要特例是多元统一偏正态分布 (SUN)。具体来说,如果(5) 中的密度生成函数是
$h^{(m+n)}(u)=(2 \pi)^{-(m+n) / 2} \exp (-u / 2)(u \geq 0)$ ,我们得到 SUN 分布,记为 $\mathbf{X} \sim S U N_{n, m}(\theta)$, pdf (见 Arellano-Valle 和 Azzalini 2006)
$$
g_{S U N_{n, m}}(\mathbf{x} ; \boldsymbol{\theta})=\frac{\phi_{n}(\mathbf{x} ; \boldsymbol{\xi}, \boldsymbol{\Omega})}{\Phi_{m}(\boldsymbol{\eta} ; \boldsymbol{\Gamma})} \times \Phi_{m}\left(\eta+\boldsymbol{\Lambda}^{\top} \boldsymbol{\Omega}^{-1}(\mathbf{x}-\boldsymbol{\xi}) ; \boldsymbol{\Gamma}-\mathbf{\Lambda}^{\top} \boldsymbol{\Omega}^{-1} \boldsymbol{\Lambda}\right)
$$
在哪里 $\phi_{n}(; ; \boldsymbol{\xi}, \boldsymbol{\Omega})$ 表示的 $p d f N_{n}(\xi, \boldsymbol{\Omega})$ 和 $\Phi_{m}(\cdot ; \boldsymbol{\Gamma})$ 表示的 $\operatorname{cdf} N_{m}(\mathbf{0}, \Gamma)$
SUE 分布的另一个重要特例是多元统一 skew-t (SUT) 分布。具体来说,如果 $h^{(m+n)}(u)=\frac{\Gamma\left(\frac{v+m \mid n}{2}\right)}{\Gamma\left(\frac{v}{2}\right)(v \pi)^{\frac{m-n}{2}}}\left(1+\frac{u}{v}\right)^{-(v+m+n) / 2}$ ,我们获得了 多元统一 skew-t (SUT) 分布,表示为 $\mathbf{Y} \sim S U T_{n, m}(\theta, v)$, 与 $\mathrm{pdf}$
$$
g_{S U T n, m}(\mathbf{x} ; \boldsymbol{\theta}, v)=\frac{t_{n}(\mathbf{x} ; \boldsymbol{\xi}, \boldsymbol{\Omega}, v)}{T_{m}(\eta ; \boldsymbol{\Gamma}, v)} \quad \times T_{m}\left(\eta+\mathbf{\Lambda}^{\top} \mathbf{\Omega}^{-1}(\mathbf{x}-\boldsymbol{\xi}) ; \frac{v+(\mathbf{x}-\boldsymbol{\xi})^{\top} \boldsymbol{\Omega}^{-1}(\mathbf{x}-\boldsymbol{\xi})}{v+n}\left(\mathbf{\Gamma}-\mathbf{\Lambda}^{\top} \boldsymbol{\Omega}^{-1} \boldsymbol{\Lambda}\right), v+n\right)
$$
在哪里 $t_{n}(\because ; \xi, \boldsymbol{\Omega}, \nu)$ 表示多元学生的 pdf- $t$ 带有位置向量的分布 $\xi$, 分散矩阵 $\boldsymbol{\Omega}$ 和自由度 $v$ ,和 $T_{m}(-; \boldsymbol{\Gamma}, \nu)$ 表示对应的 $c d f t_{m}(\cdot ; \mathbf{0}, \boldsymbol{\Gamma}, v)$.
使用引理 2 中的结果,我们可以获得 SUT 分布的边际分布和条件分布,如以下推论所示。
统计代写|生物统计代写biostatistics代考|Concomitant Vector of Order Statistics
让 $\mathbf{X} 1, \ldots, \mathbf{X} n$ 是相同维度的随机向量 $p$ 在 (1) 中具有椭圆分布,并且让 $i=1,2, \ldots, n, Y_{i}=\mathbf{a}^{\top} \mathbf{X} i$ 是这些向量的线性组合,其中 $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ , 和 $\mathbf{X}[r]$ 表示对应于 $r$ 阶统计 $Y(r)$.
在本节中,我们为 $\mathbf{X}[r]$ 就单变量 SUE 分布而言。为此,我们将首先介绍以下符号。让 $1 \leq r \leq n$ 是一个整数,并且对于整数 $1 \leq j 1<\cdots<j_{r-1} \leq n-1 ,$ 让 $\mathbf{j} j \ldots j_{r-1}=\operatorname{diag}\left(s_{1}, \ldots, s_{n-1}\right)$ 做一个 $(n-1) \times(n-1)$ $\$ \$$
s_{i}=\left伯对角矩阵
$1 \quad i=j_{1}, \ldots, j_{r-1}-1 \quad$ otherwise.
正确的。
Inthespecialcases, wehave $\$ \mathbf{S} j_{1} \ldots j_{n-1}=\mathbf{I} n-1 \$ a n d \$ \mathbf{S} j_{0}=-\mathbf{I} n-1 \$$. Furthermore, let, for $\$ i=1, \ldots, n \$$, therandomvector $\$ \mathbf{Y}=(Y$
$\backslash$ mathbf ${Y}=\backslash$ 左 (
$Y_{i} \mathbf{Y}-i$
正确的)
whereweusethenotation $\$ \mathbf{Y}-i \$$ forthevectorobtained from $\$ \mathbf{Y} \$$ bydeletingits\$i\$thcomponent. Now, letusintroducethe followingpartitio
$\backslash$ mu_{mathbf{Y}}=\left(
$\mu_{Y_{i}} \mu_{\mathbf{Y}-i}$
$\backslash$ right), \quad $\backslash$ Sigma $\backslash$ mathbf ${Y Y}}=\backslash$ left (
$\sigma_{Y_{i} Y_{i}} \quad \sigma_{\mathbf{Y}-i Y i}^{\top} \sigma_{\mathbf{Y}-i Y i} \quad \mathbf{\Sigma} \mathbf{Y}-i \mathbf{Y}-i$
$\backslash$ right), \quad $\backslash$ boldsymbol ${$ Sigma $\backslash \backslash$ mathbf ${Y} \backslash \operatorname{mathbf}{X}{}}}=\backslash$ eft (
$\sigma Y_{i} \mathbf{X} i \sigma \mathbf{Y}-i \mathbf{X} i$
(right)
$\$ \$$
我们现在推导出 $\mathbf{X}_{[r]}$ ,为了 $r=1,2, \ldots, n$ ,在以下定理中。
统计代写|生物统计代写biostatistics代考|Multivariate Normal Case
在多元正态分布的特殊情况下,由定理 2 中的一般混合形式,我们得到以下推论。
推论 5 如果 $(\boldsymbol{X} 1: \boldsymbol{X} n) \sim N_{n p}\left(\boldsymbol{\mu}=\left(\mu_{1} \vdots \boldsymbol{\mu} n\right), \boldsymbol{\Sigma}=\left(\begin{array}{lllllll}\boldsymbol{\Sigma} 11 & \cdots & \boldsymbol{\Sigma} 1 n\end{array}\right) \ddots \ddots: \boldsymbol{\Sigma} n 1 \quad\right.$ $\boldsymbol{t} \in \mathbb{R}^{p}$ ,是 (谁) 给的
$$
F_{\mathrm{Irl}}(\boldsymbol{t} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{i=1}^{n} \sum_{j_{1}<\ldots<j_{r-1} \leq j_{k} \leq n-1} \pi_{i j_{1}, \ldots, j_{r-1}} G_{S U N_{p n-1}}\left(\boldsymbol{t} ; \theta_{i j_{1}, \ldots, j_{r-1}}\right)
$$
在哪里 $G_{S U N_{p, n} 1}(\cdot ; \theta)$ 表示的 $\operatorname{cdf} S U N_{p, n-1}(\theta)$, 混合概率为
$$
\pi_{i j_{1}, \ldots, j_{r-1}}=\Phi_{n-1}\left(\eta_{i j_{1}, \ldots, j_{r-1}} ; \boldsymbol{\Gamma} i j 1, \ldots, j_{r-1}\right),
$$
和 $\theta_{i j_{1}, \cdots, j_{r-1}}$ 如定理中给出的 $2 .$
此外,在使用平均值 $S U N_{n, m}(\theta)$ 在定理 1 中提出,均值 $X_{[r]}$ 可以很容易地获得
$$
E(\boldsymbol{X}[r])=\sum i=1^{n} \sum_{j_{1}<\cdots<j_{1}-1 \leq j j_{k} \leq n-1} \pi_{i j_{1}, \ldots, j_{r-1}} \mu_{i j_{1}, \ldots, j_{r-1}},
$$
在哪里 $\mu_{i j_{1}, \ldots, j_{r-1}}$ 表示平均值 $S U N_{p, n-1}\left(\theta_{i j j_{1}, \ldots, j_{r-1}}\right)$.

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。