如果你也在 怎样代写统计推断Statistical inference这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
统计推断是指从数据中得出关于种群或科学真理的结论的过程。进行推断的模式有很多,包括统计建模、面向数据的策略以及在分析中明确使用设计和随机化。
statistics-lab™ 为您的留学生涯保驾护航 在代写统计推断Statistical inference方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计推断Statistical inference代写方面经验极为丰富,各种代写统计推断Statistical inference相关的作业也就用不着说。
我们提供的统计推断Statistical inference及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|统计推断代写Statistical inference代考|TESTING MULTIPLE HYPOTHESES
Let $\Omega$ be an observation space, and assume we are given two finite collections of families of probability distributions on $\Omega$ : families of red distributions $\mathcal{R}{i}, 1 \leq i \leq r$, and families of blue distributions $\mathcal{B}{j}, 1 \leq j \leq b$. These families give rise to $r$ red and $b$ blue hypotheses on the distribution $P$ of an observation $\omega \in \Omega$, specifically,
$R_{i}: P \in \mathcal{R}{i}$ (red hypotheses) and $B{j}: P \in \mathcal{B}{j}$ (blue hypotheses). Assume that for every $i \leq r, j \leq b$ we have at our disposal a simple detector-based test $\mathcal{T}{i j}$ capable of deciding on $R_{i}$ vs. $B_{j}$. What we want is to assemble these tests into a test $\mathcal{T}$ deciding on the union $R$ of red hypotheses vs. the union $B$ of blue ones:
$$
R: P \in \mathcal{R}:=\bigcup_{i=1}^{r} \mathcal{R}{i}, \quad B: P \in \mathcal{B}:=\bigcup{j=1}^{b} \mathcal{B}{j} . $$ Here $P$, as always, stands for the probability distribution of observation $\omega \in \Omega$. Our motivation primarily stems from the case where $R{i}$ and $B_{j}$ are convex hypotheses in a simple o.s. (2.72):
$$
\mathcal{R}{i}=\left{p{\mu}: \mu \in M_{i}\right}, \mathcal{B}{j}=\left{p{\mu}: \mu \in N_{j}\right},
$$
where $M_{i}$ and $N_{j}$ are convex compact subsets of $\mathcal{M}$. In this case we indeed know how to build near-optimal tests deciding on $R_{i}$ vs. $B_{j}$, and the question we have posed becomes, how do we assemble these tests into a test deciding on $R$ vs. $B$, with
$$
\begin{array}{ll}
R: P \in \mathcal{R}=\left{p_{\mu}: \mu \in X\right}, & X=\bigcup_{i} M_{i}, \
B: P \in \mathcal{B}=\left{p_{\mu}: \mu \in Y\right}, & Y=\bigcup_{j} N_{j} ?
\end{array}
$$
While the structure of $R, B$ is similar to that of $R_{i}, B_{j}$, there is a significant difference: the sets $X, Y$ are, in general, nonconvex, and therefore the techniques we have developed fail to address testing $R$ vs. $B$ directly.
2.5.1.2 The construction
In the situation just described, let $\phi_{i j}$ be the detectors underlying the tests $\mathcal{T}{i j}$; w.l.o.g., we can assume these detectors balanced (see Section 2.3.2.2) with some risks $\epsilon{i j}$ :
$$
\left.\begin{array}{ll}
\int_{\Omega} \mathrm{e}^{-\phi_{i j}(\omega)} P(d \omega) \leq \epsilon_{i j} & \forall P \in \mathcal{R}{i} \ \int{\Omega} \mathrm{e}^{\phi_{i j}(\omega)} P(d \omega) \leq \epsilon_{i j} & \forall P \in \mathcal{B}{j} \end{array}\right}, 1 \leq i \leq r, 1 \leq j \leq b . $$ Let us assemble the detectors $\phi{i j}$ into a detector for $R, B$ as follows:
$$
\phi(\omega)=\max {1 \leq i \leq r} \min {1 \leq j \leq b}\left[\phi_{i j}(\omega)-\alpha_{i j}\right],
$$
where the shifts $\alpha_{i j}$ are parameters of the construction.
统计代写|统计推断代写Statistical inference代考|Testing multiple hypotheses “up to closeness”
So far, we have considered detector-based simple tests deciding on pairs of hypotheses, specifically, convex hypotheses in simple o.s.’s (Section 2.4.4) and unions of convex hypotheses (Section 2.5.1). ${ }^{10}$ Now we intend to consider testing of multiple (perhaps more than 2) hypotheses “up to closeness”; the latter notion was introduced in Section 2.2.4.2.
Let $\Omega$ be an observation space, and let a collection $\mathcal{P}{1}, \ldots, \mathcal{P}{L}$ of families of probability distributions on $\Omega$ be given. As always, families $\mathcal{P}{\ell}$ give rise to hypotheses $$ H{\ell}: P \in \mathcal{P}{\ell} $$ on the distribution $P$ of observation $\omega \in \Omega$. Assume also that we are given a closeness relation $\mathcal{C}$ on ${1, \ldots, L}$. Recall that, formally, a closeness relation is some set of pairs of indices $\left(\ell, \ell^{\prime}\right) \in{1, \ldots, L}$; we interpret the inclusion $\left(\ell, \ell^{\prime}\right) \in \mathcal{C}$ as the fact that hypothesis $H{\ell}$ “is close” to hypothesis $H_{\ell}$. When $\left(\ell, \ell^{\prime}\right) \in \mathcal{C}$, we say that $\ell^{\prime}$ is close (or $\mathcal{C}$-close) to $\ell$. We always assume that
- $\mathcal{C}$ contains the diagonal: $(\ell, \ell) \in \mathcal{C}$ for every $\ell \leq L$ (“each hypothesis is close to itself”), and
- $\mathcal{C}$ is symmetric: whenever $\left(\ell, \ell^{\prime}\right) \in \mathcal{C}$, we have also $\left(\ell^{\prime}, \ell\right) \in \mathcal{C}$ (“if the $\ell$-th hypothesis is close to the $\ell^{\prime}$-th one, then the $\ell^{\prime}$-th hypothesis is close to the $\ell$-th one” $)$.
Recall that a test $\mathcal{T}$ deciding on the hypotheses $H_{1}, \ldots, H_{L}$ via observation $\omega \in \Omega$ is a procedure which, given on input $\omega \in \Omega$, builds some set $\mathcal{T}(\omega) \subset{1, \ldots, L}$, accepts all hypotheses $H_{\ell}$ with $\ell \in \mathcal{T}(\omega)$, and rejects all other hypotheses.
Risks of an “up to closeness” test. The notion of $\mathcal{C}$-risk of a test was introduced in Section 2.2.4.2, we reproduce it here for the reader’s convenience. Given closeness $\mathcal{C}$ and a test $\mathcal{T}$, we define the $\mathcal{C}$-risk
$$
\operatorname{Risk}^{\mathcal{C}}\left(\mathcal{T} \mid H_{1}, \ldots, H_{L}\right)
$$
of $\mathcal{T}$ as the smallest $\epsilon \geq 0$ such that
Whenever an observation $\omega$ is drawn from a distribution $P \in \bigcup_{\ell} \mathcal{P}{\ell}$, and $\ell{}$ is such that $P \in \mathcal{P}{\ell{0}}$ (i.e., hypothesis $H_{\ell_{0}}$ is true), the $P$-probability of the event $\ell_{} \notin \mathcal{T}(\omega)$ (“true hypothesis $H_{\ell_{}}$ is not accepted”) or there exists $\ell^{\prime}$ not close to $\ell$ such that $H_{\ell}$ is accepted” is at most $\epsilon$. Equivalently: $\operatorname{Risk}^{\mathcal{C}}\left(\mathcal{T} \mid H_{1}, \ldots, H_{L}\right) \leq \epsilon$ if and only if the following takes place: Whenever an observation $\omega$ is drawn from a distribution $P \in \bigcup_{\ell} \mathcal{P}{\ell}$, and $\ell{}$ is such that $P \in \mathcal{P}{\ell{}}$ (i.e., hypothesis $H_{\ell_{0}}$ is true), the $P$-probability of the event $\ell_{} \in \mathcal{T}(\omega)$ (“the true hypothesis $H_{\ell_{0}}$ is accepted”) and $\ell^{\prime} \in \mathcal{T}(\omega)$ implies that $(\ell, \ell) \in \mathcal{C}$ (“all accepted hypotheses are $\mathcal{C}$-close to the true hypothesis $H_{\ell_{*}} “$ ) is at least $1-\epsilon$.
统计代写|统计推断代写Statistical inference代考|Illustration: Selecting the best among a family of estimates
Let us illustrate our machinery for multiple hypothesis testing by applying it to the situation as follows:
We are given:
- a simple nondegenerate observation scheme $\mathcal{O}=\left(\Omega, \Pi ;\left{p_{\mu}(\cdot): \mu \in\right.\right.$ $\mathcal{M}} ; \mathcal{F})$
- a seminorm $|\cdot|$ on $\mathbf{R}^{n, 11}$
- a convex compact set $X \subset \mathbf{R}^{n}$ along with a collection of $M$ points $x_{i} \in$ $\mathbf{R}^{n}, 1 \leq i \leq M$, and a positive $D$ such that the $|\cdot|$-diameter of the set $X^{+}=X \cup\left{x_{i}: 1 \leq i \leq M\right}$ is at most $D:$
$$
\left|x-x^{\prime}\right| \leq D \forall\left(x, x^{\prime} \in X^{+}\right),
$$ - an affine mapping $x \mapsto A(x)$ from $\mathbf{R}^{n}$ into the embedding space of $\mathcal{M}$ such that $A(x) \in \mathcal{M}$ for all $x \in X$,
- a tolerance $\epsilon \in(0,1)$.
We observe a $K$-element sample $\omega^{K}=\left(\omega_{1}, \ldots, \omega_{K}\right)$ of observations
$$
\omega_{k} \sim p_{A\left(x_{}\right)}, 1 \leq k \leq K, $$ independent across $k$, where $x_{} \in \mathbf{R}^{n}$ is an unknown signal known to belong to $X$. Our “ideal goal” is to use $\omega^{K}$ in order to identify, with probability $\geq 1-\epsilon$, the $|\cdot|$-closest to $x_{*}$ point among the points $x_{1}, \ldots, x_{M}$.
The goal just outlined may be too ambitious, and in the sequel we focus on the relaxed goal as follows:
Given a positive integer $N$ and a “resolution” $\theta>1$, consider the grid
$$
\Gamma=\left{r_{j}=D \theta^{-j}, 0 \leq j \leq N\right}
$$
and let
$$
\rho(x)=\min \left{\rho_{j} \in \Gamma: \rho_{j} \geq \min {1 \leq i \leq M}\left|x-x{i}\right|\right} .
$$
Given the design parameters $\alpha \geq 1$ and $\beta \geq 0$, we want to specify a volume of observations $K$ and an inference routine $\omega^{K} \mapsto i_{\alpha, \beta}\left(\omega^{K}\right) \in{1, \ldots, M}$ such that
$$
\forall\left(x_{} \in X\right): \operatorname{Prob}\left{\left|x_{}-x_{i_{\alpha, \beta}\left(\omega^{K}\right)}\right|>\alpha \rho\left(x_{*}\right)+\beta\right} \geq 1-\epsilon .
$$

统计推断代考
统计代写|统计推断代写Statistical inference代考|TESTING
MULTIPLE HYPOTHESES
让 $\Omega \mathrm{~ 是 一 个 观 寮 空 间 , 并 假 设 㧎}$ $r \notin$ 色和 $b$ 关于分布的藍色假设 $P$ 汔㟯的 $\omega \in \Omega$ ,具体来说:
$R_{i}: P \in \mathcal{R} i$ (止色假设) 和 $B j: P \in \mathcal{B} j$ (蓝色假设):假讵对于每个 $i \leq r, j \leq b \mathrm{~ 俄 们 有 一 个 简 单 的 基 于 检 则 器 的 测 试 供 㧴}$ 能䏧夫定 $R_{i}$ 对比 $B_{j} \mathrm{~ 涐 们 相 要 的 是 把 这 㓙}$
$$
R: P \in \mathcal{R}:=\bigcup_{i=1}^{r} \mathcal{R} i, \quad B: P \in \mathcal{B}:=\bigcup^{j=1^{b} \mathcal{B} j} .
$$
这里 $P$ ,和往常一样,代表岘寮的概率分布 $\omega \in \Omega$. 我们的动机朿要源于以下倩兄R $R$ 和 $B_{j}$ 是简单 os (2.72) 中的凸假设:
$\mathrm{~ L e f t ~ 的 分 陾}$
在咐里 $M_{i}$ 和 $N_{j}$ 是的凸係子集 $\mathcal{M} \mathrm{~ . ~ 在 这 祌 ⿰}$ 们如何将这果颉试沮合成一个决定 $R$ 对比 $B$
$\mathrm{~ l e f t ~ 的 份 䘏 答}$
虽知绍构 $R, B$ 粂㐵于 $R_{i}, B_{j} \mathrm{~ , 有 一 个 显 ⿱}$
2.5.1.2构造
在刏才描述的情兄下,让 $\phi_{i j}$ 咸为测河基础的检测器 $\mathcal{T}{i j} \mathrm{~ ; ~ w i o g , 㧴}$ 险 $\epsilon i j$ : $\mathrm{~ Y i g h t ~ 的 分 难 洋}$ 让找们组荘罙则器 $\phi i$ 进入检则哭 $R, B$ 如下: $$ \phi(\omega)=\max 1 \leq i \leq r \min 1 \leq j \leq b\left[\phi{i j}(\omega)-\alpha_{i j}\right],
$$
轮盰的地方 $\alpha_{i j}$ 是构造参数,
统计代写|统计推断代写Statistical inference代考|Testing multiple hypotheses “up to closeness”
$\mathrm{~ 到 目 前 为 止 , 我 伌 已 经 者 䖉 了 基 于 检 则 器 的 䈕 ⿻}$ 2.5.1节)。仞现在涐们打算考虑测试多个 (可能超过 $2 \mathrm{~ 个 ) ~ 假 设 直 至 接 近 ” ; 后 一 个}$
让 $\Omega$ 做一个观察空间,让一个債合 $\mathcal{P}{1}, \ldots, \mathcal{P}$ $$ H \ell: P \in \mathcal{P} \ell $$ 关于分布 $P$ 观募的 $\omega \in \Omega \mathrm{~ 还 假 设 拒}$ 译包念 $\left(\ell, \ell^{\prime}\right) \in \mathcal{C}$ 作为假设的事实 $H \ell \ell^{\prime}$ 接近’徦设 $H{\ell} \mathrm{~ . ~ 什 么 时 基}$
- C包含对角线: $(\ell, \ell) \in \mathcal{C}$ 对于每个 $\ell \leq L \mathrm{~ ( ” 每 个 徦 设 都 阠 自 弟}$
- $\mathcal{C}$ 是对称的: 毎当 $\left(\ell, \ell^{\prime}\right) \in \mathcal{C} \mathrm{~ , 我 行 ⿰}$
回相一下测试 $\mathcal{T}$ ค定假讵 $H_{1}, \ldots, H_{L}$ 通过观㝗 $\omega \in \Omega \mathrm{~ 是 一 个 过 程 , 在 圩}$ $H \ell$ 和 $\ell \in \mathcal{T}(\omega)$ ,并拒绝所有其他假设。
$\mathrm{~ 接 近 侏 财 沅}$ 定义 $\mathcal{C}$-风验
$$
\operatorname{Risk}^{\mathcal{C}}\left(\mathcal{T} \mid H_{1}, \ldots, H_{L}\right)
$$
的 $\mathcal{T}$ 作为最小的 $\epsilon \geq 0$ 这样 受 ) 或存在 $\ell^{\prime}$ 不接近 $\ell$ 这样 $H \ell^{\text {被接受”最冬 }}$ $P \in \bigcup_{\ell} \mathcal{P} \ell_{r}$ ,和 $\ell$ 是这样的 $P \in \mathcal{P} \ell$ (即假设 $H_{\ell_{0}}$ 是真的), $P \mathrm{~ – ~ 事 朱 的 狔 ल ⿰}$ $(\ell, \ell) \in \mathcal{C}$ (“所有公认的假设都是 $\mathcal{C}$ – 接近真实假设 $H_{\ell+}$ (I) 至”是 $1-\epsilon$.
统计代写|统计推断代写Statistical inference代考|Illustration: Selecting the best among a family of estimates
$\mathrm{~ 让 我 | 门 逦 过 将 其 应 用 于 以 下 情 兄 来 说 明 我 i}$ 戓们得到:
$\mathrm{~ – ~ 一 个 算 哩 的 非 退 化 观 㟯 方 宴 ~ l e f t ~ 的 分 伵}$ - 半规范 $|\cdot|$ 上 $\mathbf{R}^{n, 11}$
- 凸䒨集 $X \subset \mathbf{R}^{n}$ 连同一䒺列 $M$ 祸分 $x_{i} \in \mathbf{R}^{n}, 1 \leq i \leq M$, 和一个正 $D$ 使得 $\mid \boldsymbol{-}$
$\mathrm{~ M e f t ~ 的 分 伃 符 谋}$
最侈是 $D$
$$
\left|x-x^{\prime}\right| \leq D \forall\left(x, x^{\prime} \in X^{+}\right),
$$ - 仿买映射 $x \mapsto A(x) 从 \mathbf{R}^{n}$ 进入嵌入空间 $\mathcal{M}$ 这样 $A(x) \in \mathcal{M}$ 对所有人 $x \in X$,
- 宽容 $\epsilon \in(0,1)$.
我们观窖到一个 $K \mathrm{~ – 元 龺}$
$$
\omega_{k} \sim p_{A(z)}, 1 \leq k \leq K,
$$ 中点 $x_{1}, \ldots, x_{M}$
$\mathrm{~ 刏 才 勾 勒 的 目 标 可 能 扎 于 宏 大 , 后 経 㧴 们 洚 重 点 放 在 案}$ 给定一个正蝗数 $N$ 和一个”决议 $\theta>1 \mathrm{~ , 考 虑 囘}$
$\mathrm{~ l e f t ~ 的 分 哃}$
然后让
$\mathrm{~ M e f t ~ 的 攽 陗 符 㘴 先 或 ⿰}$

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。