如果你也在 怎样代写统计推断Statistical inference这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
统计推断是指从数据中得出关于种群或科学真理的结论的过程。进行推断的模式有很多,包括统计建模、面向数据的策略以及在分析中明确使用设计和随机化。
assignmentutor-lab™ 为您的留学生涯保驾护航 在代写统计推断Statistical inference方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计推断Statistical inference代写方面经验极为丰富,各种代写统计推断Statistical inference相关的作业也就用不着说。
我们提供的统计推断Statistical inference及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|统计推断代写Statistical inference代考|Simple observation schemes—Examples
In Gaussian o.s.
- the observation space $(\Omega, \Pi)$ is the space $\mathbf{R}^{d}$ with Lebesgue measure;
- the family $\left{p_{\mu}(\cdot): \mu \in \mathcal{M}\right}$ is the family of Gaussian densities $\mathcal{N}(\mu, \Theta)$, with fixed positive definite covariance matrix $\Theta$; distributions from the family are parameterized by their expectations $\mu$. Thus,
$$
\mathcal{M}=\mathbf{R}^{d}, p_{\mu}(\omega)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{Det}(\Theta)}} \exp \left{-\frac{1}{2}(\omega-\mu)^{T} \Theta^{-1}(\omega-\mu)\right}
$$ - the family $\mathcal{F}$ is the family of all affine functions on $\mathbf{R}^{d}$.
It is immediately seen that Gaussian o.s. meets all requirements imposed on a simple o.s. For example,
$$
\ln \left(p_{\mu}(\omega) / p_{\nu}(\omega)\right)=(\nu-\mu)^{T} \Theta^{-1} \omega+\frac{1}{2}\left[\nu^{T} \Theta^{-1} \nu-\mu^{T} \Theta^{-1} \mu\right]
$$
is an affine function of $\omega$ and thus belongs to $\mathcal{F}$. Besides this, a function $\phi(\cdot) \in \mathcal{F}$ is affine: $\phi(\omega)=a^{T} \omega+b$, implying that
$$
\begin{aligned}
f(\mu) &:=\ln \left(\int_{\mathbf{R}^{d}} e^{\phi(\omega)} p_{\mu}(\omega) d \omega\right)=\ln \left(\mathbf{E}{\xi \sim \mathcal{N}\left(0, I{d}\right)}\left{\exp \left{a^{T}\left(\Theta^{1 / 2} \xi+\mu\right)+b\right}\right}\right) \
&=a^{T} \mu+b+\text { const, } \
\text { const } &=\ln \left(\mathbf{E}{\xi \sim \mathcal{N}\left(0, I{d}\right)}\left{\exp \left{a^{T} \Theta^{1 / 2} \xi\right}\right}\right)=\frac{1}{2} a^{T} \Theta a
\end{aligned}
$$
is an affine (and thus a concave) function of $\mu_{\text {. }}$.
As we remember from Chapter 1, Gaussian o.s. is responsible for the standard signal processing model where one is given a noisy observation
$$
\omega=A x+\xi \quad[\xi \sim \mathcal{N}(0, \Theta)]
$$
of the image $A x$ of unknown signal $x \in \mathbf{R}^{n}$ under linear transformation with known $d \times n$ sensing matrix, and the goal is to infer from this observation some knowledge about $x$. In this situation, a hypothesis that $x$ belongs to some set $X$ translates into the hypothesis that the observation $\omega$ is drawn from Gaussian distribution with known covariance matrix $\Theta$ and expectation known to belong to the set $M={\mu=$ $A x: x \in X}$. Therefore, deciding upon various hypotheses on where $x$ is located reduces to deciding on hypotheses on the distribution of observations in Gaussian o.s.
统计代写|统计推断代写Statistical inference代考|Executive summary of convex-concave saddle point problems
The results to follow are absolutely standard, and their proofs can be found in all textbooks on the subject, see, e.g., [221] or [15, Section D.4].
Let $U$ and $V$ be nonempty sets, and let $\Phi: U \times V \rightarrow \mathbf{R}$ be a function. These data define an antagonistic game of two players, I and II, where player I selects a point $u \in U$, and player II selects a point $v \in V$; as an outcome of these selections, player I pays to player II the sum $\Phi(u, v)$. Clearly, player I is interested in minimizing this payment, and player $\mathrm{II}$ in maximizing it. The data $U, V, \Phi$ are known to the players in advance, and the question is, what should be their selections?
When player I makes his selection $u$ first, and player II makes his selection $v$ with $u$ already known, player I should be ready to pay for a selection $u \in U$ a toll as large as
$$
\bar{\Phi}(u)=\sup {v \in V} \Phi(u, v) . $$ In this situation, a risk-averse player $\mathrm{T}$ would select $u$ hy minimizing the ahove worst-case payment, by solving the primal problem $$ \operatorname{Opt}(P)=\inf {u \in U} \bar{\Phi}(u)=\inf {u \in U} \sup {v \in V} \Phi(u, v)
$$
associated with the data $U, V, \Phi$.
Similarly, if player II makes his selection $v$ first, and player I selects $u$ after $v$ becomes known, player II should be ready to get, as a result of selecting $v \in V$, the amount as small as
$$
\underline{\Phi}(v)=\inf {u \in U} \Phi(u, v) . $$ In this situation, a risk-averse player II would select $v$ by maximizing the above worst-case payment, by solving the dual problem $$ \operatorname{Opt}(D)=\sup {v \in V} \Phi(v)=\sup {v \in V} \inf {u \in U} \Phi(u, v) .
$$

统计推断代考
统计代写|统计推断代写Statistical inference代考|Simple observation schemes—Examples
在高斯操作系统中
- 观察空间 $(\Omega, \Pi)$ 是空间 $\mathbf{R}^{d}$ 用勒贝格测度;
- 家庭\1eft 的分隔符缺失或无法识别
是高斯密度族 $\mathcal{N}(\mu, \Theta)$ ,具有固定的正定协方差矩阵 $\Theta$; 来自家庭的分布由他们的期望参数化 $\mu$. 因此,
\left 的分隔符缺失或无法识别 - 家庭 $\mathcal{F}$ 是所有仿射函数的族 $\mathbf{R}^{d}$.
立即可以看出,Gaussian os 满足了对简单 os 的所有要求,例如,
$$
\ln \left(p_{\mu}(\omega) / p_{\nu}(\omega)\right)=(\nu-\mu)^{T} \Theta^{-1} \omega+\frac{1}{2}\left[\nu^{T} \Theta^{-1} \nu-\mu^{T} \Theta^{-1} \mu\right]
$$
是一个仿射函数 $\omega$ 因此属于 $\mathcal{F}$. 除此之外,还有一个功能 $\phi(\cdot) \in \mathcal{F}$ 是仿射的: $\phi(\omega)=a^{T} \omega+b$, 意味着
$\backslash 1$ left 的分隔符缺失或无法识别
是仿射 (因此是凹) 函数 $\mu .$
正如我们在第 1 章中记得的那样,Gaussian os 负责标准信号处理模型,其中给定一个噪声观察值
$$
\omega=A x+\xi \quad[\xi \sim \mathcal{N}(0, \Theta)]
$$
图像的 $A x$ 末知信号 $x \in \mathbf{R}^{n}$ 在已知的线性变换下 $d \times n$ 感知矩阵,目标是从这个观察中推断出一些关于 $x$. 在这种情况下,假设 $x$ 属于某个集合 $X$ 转化为假设 观察 $\omega$ 从具有已知协方差矩阵的高斯分布中得出 $\Theta$ 和已知属于集合的期望 $M=\mu=\$ \$ A x: x \in X$. 因此,决定在哪里的各种假设 $x$ 位于降低到决定高斯 os 中观察分布的假设
统计代写|统计推断代写Statistical inference代考|Executive summary of convex-concave saddle point problems
遵循的结果是绝对标准的,它们的证明可以在所有关于该主题的教科书中找到,例如,参见 [221] 或 [15, Section D.4]。
让 $U$ 和 $V$ 是非空集,并且让 $\Phi: U \times V \rightarrow \mathbf{R}$ 成为一个函数。这些数据定义了两个玩家 $\mid$ 和 II 的对抗游戏,其中玩家 I 选择一个点 $u \in U$ ,玩家 II 选择一个点 $v \in V$; 作为这些选择的结果,玩家 I 支付给玩家 II 的总和 $\Phi(u, v)$. 显然,玩家 I 有兴诹最小化这笔付款,而玩家II在最大化它。数据 $U, V, \Phi$ 玩家们提前知道了,问题 是,他们的选择应该是什么?
当玩家 | 做出选择时 $u$ 首先,玩家 II 做出选择 $v$ 和 $u$ 已经知道,玩家我应该准备好为选择付费 $u \in U$ 大到
$$
\bar{\Phi}(u)=\sup v \in V \Phi(u, v) .
$$
在这种情况下,规避风险的玩家 $\mathrm{T}$ 会选择 $u$ hy通过解决原始问题来最小化ahove最坏情况下的付款
$$
\operatorname{Opt}(P)=\inf u \in U \bar{\Phi}(u)=\inf u \in U \sup v \in V \Phi(u, v)
$$
与数据相关联 $U, V, \Phi$.
同样,如果玩家 II 做出选择 $v$ 首先,我选择的玩家 $u$ 后 $v$ 众所周知,玩家 II 应该准备好获得,作为选择的结果 $v \in V$ ,金额小到
$$
\Phi(v)=\inf u \in U \Phi(u, v) .
$$
在这种情况下,规避风险的玩家 II 会选择 $v$ 通过最大化上述最坏情况支付,通过解决对偶问题
$$
\operatorname{Opt}(D)=\sup v \in V \Phi(v)=\sup v \in V \inf u \in U \Phi(u, v) .
$$

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
R语言代写 | 问卷设计与分析代写 |
PYTHON代写 | 回归分析与线性模型代写 |
MATLAB代写 | 方差分析与试验设计代写 |
STATA代写 | 机器学习/统计学习代写 |
SPSS代写 | 计量经济学代写 |
EVIEWS代写 | 时间序列分析代写 |
EXCEL代写 | 深度学习代写 |
SQL代写 | 各种数据建模与可视化代写 |