assignmentutor-lab™ 为您的留学生涯保驾护航 在代写贝叶斯网络Bayesian network方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯网络Bayesian network代写方面经验极为丰富，各种代写贝叶斯网络Bayesian network相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|贝叶斯网络代写Bayesian network代考|Further Reading

Several books on graphical models devote some space specifically to DBNs: among them Korb and Nicholson (2011) in Section 4.5, Koller and Friedman (2009) in Section 6.2.2, Kjærluff and Madsen (2013) in Section $4.4$ and Sucar (2015) in Chapter $9 .$

DBNs are a useful tool in modelling dynamic systems in a more general machine learning setting, and are covered as such in Russell and Norvig (2009) in Section $15.5$ and in Murphy (2012). They have also been extended beyond the basic formulation to model continuous variables and nonhomogeneous Markov processes; for a recent review see Scutari (2020).
Exercises
Exercise 4.1 Consider the networks in Figure 4.1.

1. How many parameters have the networks, and the local distributions associated with the individual nodes, in the top-left, top-right and bottom-left panels?
2. Extend the network in the bottom-left panel to model as second time point $t_{2}$ in addition to $t_{0}$ and $t_{1}$. How many additional parameters does that require?
3. Finally, make the nodes in $t_{2}$ dependent on the nodes in $t_{0}$ in addition to those in $t_{1}$. How many additional parameters does that require?
Exercise 4.2 Consider again the DBN in the bottom-left panel of Figure 4.1.
4. Extend the network to model $t_{2}$ as in point 2 of Exercise 4.1, and create the bn object encoding it. Call the new nodes St2, Tin2 and Tout2.

## 统计代写|贝叶斯网络代写Bayesian network代考|General Bayesian Networks

In this chapter we will conclude our exploration of BNs, moving to the more general case in which each variable in the data is modelled with the random variable that best suits it rather than limiting ourselves to multinomial and normal distributions. For this purpose, we will use the Stan (Carpenter et al., 2017) MCMC sampler through its interface rstan (Stan Development Team, 2020b).

Suppose that we are interested in estimating the waiting times in the Accidents \& Emergency (A \& E) department of a hospital. Much information is publicly available on the subject, since this is one of the key metrics A \& E departments are evaluated on. For instance, the House of Commons’ and NHS England2 regularly report the relevant statistics on this subject: we will use them as a source of expert knowledge in constructing our $\mathrm{BN}$.

Patients that present themselves to $\mathrm{A} \& \mathrm{E}$ are prioritised based on the severity of their symptoms; this process is called triage. Clearly, some patients arrive in critical condition and need immediate attention; some can wait for a short time before treatment is administered; while others need little or no medical treatment at all. Two important factors that may determine which category patients fall in are the type of incident (I) they were involved in and their age (A), since older people are physically more fragile and recover more slowly. We take these two variables to largely determine the trauma score (s), which is defined by the Smart Incident Command System triage system on a scale from 0 to 12. This is a vastly simplified characterisation, which we choose for the sake of the example: a real triage process takes into account other information such as co-morbidities (diabetes, cancer, etc.) and many other risk factors (obesity, high blood pressure, etc.).

# 贝叶斯网络代考

## 统计代写|贝叶斯网络代写Bayesian network代考|Further Reading

DBN 是在更通用的机器学习环境中对动态系统进行建模的有用工具，Russell 和 Norvig (2009) 的第 1 节对此进行了介绍。15.5在墨菲（2012 年）中。它们还扩展到模拟连续变量和非齐次马尔可夫过程的基本公式；有关最近的评论，请参阅 Scutari (2020)。

1. 在左上角、右上角和左下角的面板中有多少个参数以及与各个节点相关联的局部分布？
2. 将左下面板中的网络扩展为第二个时间点的模型吨2此外吨0和吨1. 这需要多少额外的参数？
3. 最后，使节点在吨2依赖于节点吨0除了那些在吨1. 这需要多少额外的参数？
练习 4.2 再次考虑图 4.1 左下角的 DBN。
4. 将网络扩展到模型吨2如练习 4.1 的第 2 点，并创建 bn 对象对其进行编码。调用新节点 St2、Tin2 和 Tout2。

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师