assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富，各种代写现代代数Modern Algebra相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 英国补考|现代代数代写Modern Algebra代考|Groups

Historically, the concept of a group arose through the study of bijective mappings $A(S)$ on a non-empty set $S$. Any mathematical concept comes naturally in a very concrete form from specific sources. We start with two familiar algebraic systems: $(\mathbf{Z},+)$ (under usual addition of integers) and $\left(\mathbf{Q}^{+}, \cdot\right)$ (under usual multiplication of positive rational numbers). We observe that the system $(\mathbf{Z},+)$ possesses the following properties:

1. ‘ $+$ ‘ is a binary operation on $\mathbf{Z}$;
2. ‘+’ is associative in $\mathbf{Z}$;
3. $\mathbf{Z}$ contains an additive identity element, i.e., there is a special element, namely 0 , such that $x+0=0+x=x$ for every $x$ in $\mathbf{Z}$;
4. $\mathbf{Z}$ contains additive inverses, i.e., to each $x \in \mathbf{Z}$, there is an element $(-x)$ in $\mathbf{Z}$, called its negative, such that $x+(-x)=(-x)+x=0$.
We also observe that the other system $\left(\mathbf{Q}^{+}, \cdot\right)$ possesses similar properties:
5. multiplication ‘ ” is a binary operation on $\mathbf{Q}^{+}$;
6. multiplication ‘ ‘ is associative in $\mathbf{Q}^{+}$;
7. $\mathbf{Q}^{+}$contains a multiplicative identity element, i.e., there is a special element, namely 1 , such that $x \cdot 1=1 \cdot x=x$ for every $x$ in $\mathbf{Q}^{+}$;
8. $\mathbf{Q}^{+}$contains multiplicative inverses, i.e., to each $x \in \mathbf{Q}^{+}$, there is an element $x^{-1}$ which is the reciprocal of $x$ in $\mathbf{Q}^{+}$, such that $x \cdot\left(x^{-1}\right)=\left(x^{-1}\right) \cdot x=1$.

If we consciously ignore the notation and terminology, the above four properties are identical in the algebraic systems $(\mathbf{Z},+)$ and $\left(\mathbf{Q}^{+}, \cdot\right)$. The concept of a group may be considered as a distillation of the common structural forms of $(\mathbf{Z},+)$ and $\left(\mathbf{Q}^{+}, \cdot\right)$ and of many other similar algebraic systems.

Remark The algebraic system $(A(S), \circ)$ of bijective mappings $A(S)$ on a nonempty set $S$ (under usual composition of mappings) satisfies all the above four properties. This group of transformations is not the only system satisfying all the above properties. For example, the non-zero rationals, reals or complex numbers also satisfy above four properties under usual multiplication. So it is convenient to introduce an abstract concept of a group to include these and other examples.

## 英国补考|现代代数代写Modern Algebra代考|Subgroups and Cyclic Groups

Arbitrary subsets of a group do not generally invite any attention. But subsets forming groups contained in larger groups create interest. For example, the group of even integers with 0 , under usual addition is contained in the larger group of all integers and the group of positive rational numbers under usual multiplication is contained in the larger group of positive real numbers. Such examples suggest the concept of a subgroup, which is very important in the study of group theory. The cyclic subgroup is an important subgroup and is generated by an element $g$ of a group $G$. It is the smallest subgroup of $G$ which contains $g$. In this section we study subgroups and cyclic groups.

Let $(G, \circ)$ be a group and $H$ a non-empty subset of $G$. If for any two elements $a, b \in H$, it is true that $a \circ b \in H$, then we say that $H$ is closed under this group operation of $G$. Suppose now $H$ is closed under the group operation ‘o’ on $G$. Then we can define a binary operation ${ }{\circ}^{H}: H \times H \rightarrow H$ by $a \circ{H} b=a \circ b$ for all $a, b \in H$. This operation ${ }_{\circ} H$ is said to be the restriction of ‘o’ to $H \times H$. We explain this with the help of the following example.

Example 2.4.1 Consider the additive group $(\mathbf{R},+)$ of real numbers. If $\mathbf{Q}^{}$ is the set of all non-zern rational numbers, then $\mathbf{Q}^{}$ is a non-empty subset of $\mathbf{R}$. Now for any two $a, b \in \mathbf{Q}^{}$, we find that $a b$ (under usual product of rational numbers) is an element of $\mathbf{Q}^{}$. But we cannot say that $\mathbf{Q}^{*}$ is closed under the group operation ‘ $+$ ‘ on $\mathbf{R}$. Consider now the set $\mathbf{Z}$ of integers. We can show easily that $\mathbf{Z}$ is closed under the group operation ‘+’ on $\mathbf{R}$.

# 现代代数代考

## 英国补考|现代代数代写Modern Algebra代考|Groups

1. ‘ +’ 是一个二元运算Z;
2. ‘+’ 是关联的 $\mathbf{Z}$;
3. Z包含一个加法单位元素，即有一个特殊元素，即 0 ，使得 $x+0=0+x=x$ 对于每个 $x$ 在 $\mathbf{Z}$;
4. Z包含加法逆元，即对每个 $x \in \mathbf{Z}$, 有一个元素 $(-x)$ 在 $\mathbf{Z}$ ，称为它的负数，这样 $x+(-x)=(-x)+x=0$.
我们还观察到另一个系统 $\left(\mathbf{Q}^{+}, \cdot\right)$ 具有相似的性质:
5. 乘法’ ” 是二元运算 $\mathbf{Q}^{+}$;
6. 乘法”在 $\mathbf{Q}^{+}$;
7. $\mathbf{Q}^{+}$包含一个乘法单位元素，即，有一个特殊元素，即 1 ，使得 $x \cdot 1=1 \cdot x=x$ 对于每个 $x$ 在 $\mathbf{Q}^{+}$;
8. $\mathbf{Q}^{+}$包含乘法逆元，即对每个 $x \in \mathbf{Q}^{+}$, 有一个元素 $x^{-1}$ 这是倒数 $x$ 在 $\mathbf{Q}^{+}$, 这样 $x \cdot\left(x^{-1}\right)=\left(x^{-1}\right) \cdot x=1$.
如果我们有意识地忽略符号和术语，上述四个性质在代数系统中是相同的 $(\mathbf{Z},+)$ 和 $\left(\mathbf{Q}^{+}, .\right)$. 组的概念可以被认为是对常见结构形式的提炼 $(\mathbf{Z},+)$ 和 $\left(\mathbf{Q}^{+}, .\right)$和许多 其他类似的代数系统。
备注 代数系统 $(A(S), \circ)$ 双射映射 $A(S)$ 在非空集上 $S$ (在通常的映射组合下) 满足以上四个属性。这组变换并不是唯一满足上述所有属性的系统。例如，非零有 理数、实数或复数在通常的乘法下也满足上述四个性质。因此，引一个组的抽象概念来包含这些和其他示例是很方便的。

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师