如果你也在 怎样代写组合学Combinatorics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

组合学是数学的一个领域,主要涉及计数(作为获得结果的手段和目的)以及有限结构的某些属性。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写组合学Combinatorics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写组合学Combinatorics代写方面经验极为丰富,各种代写组合学Combinatorics相关的作业也就用不着说。

我们提供的组合学Combinatorics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
英国补考|组合学代写Combinatorics代考|MATH 482

英国补考|组合学代写Combinatorics代考|Classifying All Partitions

First, we know the generating function of partitions with exactly $m$ parts. This family is obtained from partitions with at most $m$ parts by adding a column of $m$ cells. It follows from (2.44) that the generating function of partitions with exactly $m$ parts is
$$
\frac{q^{m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$
This then must be the coefficient of $x^{m}$ in the expansion of (2.46). In other words
$$
\prod_{m \geq 1} \frac{1}{1-x q^{m}}=1+\sum_{m \geq 1} \frac{x^{m} q^{m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$
Secondly, we can generate all partitions according to the number of parts by classifying them according to the size of their Durfee square. We do this as follows.
From the decomposition in Figure 2.33, we can recover the number of parts of $\lambda$ by adding to $m$ the number of parts of $\mu$. But the generating function for the $\mu$ ‘s which keeps track of the number of parts as the exponent of $x$ is
$$
\frac{1}{(1-x q)\left(1-x q^{2}\right) \cdots\left(1-x q^{m}\right)}
$$
Clearly each part used to build up $\mu$ contributes 1 to the exponent of $x$ in the expansion of this. We have no restriction on the $\tau$ ‘s attached to the right of the Durfee square other than they should not have more than $m$ parts. The generating function of the $\tau$ ‘s is of course (2.44).

英国补考|组合学代写Combinatorics代考|Self-Conjugate Partitions

Another application of the Durfee square idea is the enumeration of self-conjugate partitions. These are partitions which are equal to their own conjugate, in other words partitions whose diagram is symmetric with respect to the diagonal line $y=x$

We will construct the generating function of self-conjugate partitions two different ways.

Again consider the decomposition of a partition into the three pieces consisting of an $m \times m$ square and the two partitions $\tau$ and $\mu$ as we did in Figure 2.33.

However, now the $\tau$ and $\mu$ in decomposition of Figure $2.33$ must be so that $\tau=\mu^{\prime}$ since we need to fall back on the same partition after reflecting about the diagonal line (Fig. 2.35).

This means that instead of using Figure $2.34$ to generate the relevant partitions to add to the Durfee square, now we need to pick pairs of identical parts as generated symbolically by the expression in Figure 2.36. Here one of the double rows picked is used as a row of $\mu$, while the other is used as a column of $\tau$. We see that the generating function for self-conjugate partitions which have an $m \times m$ Durfee square is
$$
\frac{q^{m^{2}}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 m}\right)}
$$
Summing over all $m$, the generating function of self-conjugate partitions is given by
$$
1+\sum_{m \geq 1} \frac{q^{m^{2}}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 m}\right)}
$$

英国补考|组合学代写Combinatorics代考|MATH 482

组合学代考

英国补考|组合学代写Combinatorics代考|Classifying All Partitions

首先,我们确切地知道分区的生成函数 $m$ 部分。这个族是从最多有的分区中获得的 $m$ 通过添加一列来分割 $m$ 细胞。从 (2.44) 可以得出,分区的生成函数正好 $m$ 零 件是
$$
\frac{q^{m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$
这必须是系数 $x^{m}$ 在 (2.46) 的展开式中。换句话说
$$
\prod_{m \geq 1} \frac{1}{1-x q^{m}}=1+\sum_{m \geq 1} \frac{x^{m} q^{m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$
其次,我们可以通过根据其Durfee正方形的大小对它们进行分类,根据零件的数量来生成所有的分区。我们这样做如下。 从图 $2.33$ 的分解中,我们可以恢复 $\lambda$ 通过添加到 $m$ 的零件数 $\mu$. 但生成函数为 $\mu$ ‘s 跟踪零件的数量作为指数 $x$ 是
$$
\frac{1}{(1-x q)\left(1-x q^{2}\right) \cdots\left(1-x q^{m}\right)}
$$
显然每个部分都用来建立 $\mu$ 对 的指数贡献 $1 x$ 在此展开。我们没有限制 $\tau$ 的附加在 Durfee 广场的右侧以外,它们不应超过 $m$ 部分。的生成函数 $\tau$ 的当然是 (2.44) 。

英国补考|组合学代写Combinatorics代考|Self-Conjugate Partitions

Durfee 平方思想的另一个应用是自共轭分区的枚举。这些是等于它们自己的共轭的分区,换句话说,其图关于对角线对称的分区 $y=x$
我们将以两种不同的方式构造自共轭分区的生成函数。
再次考虑将分区分解为三个部分,其中包括 $m \times m$ 正方形和两个分区 $\tau$ 和 $\mu$ 正如我们在图 $2.33$ 中所做的那样。
然而,现在 $\tau$ 和 $\mu$ 在分解图2.33必须是这样 $\tau=\mu^{\prime}$ 因为我们需要在对角线反射后回到同一个分区上 (图 2.35) 。
这意味着,而不是使用 Figure $2.34$ 为了生成相关的分区以添加到 Durfee 正方形,现在我们需要选择由图 $2.36$ 中的表达式象征性地生成的相同部分对。这里选择 的双排中的一个用作一排 $\mu$ ,而另一个用作一列 $\tau$. 我们看到自共轭分区的生成函数具有 $m \times m$ 杜菲广场是
$$
\frac{q^{m^{2}}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 m}\right)}
$$
总和 $m$ ,自共轭分区的生成函数由下式给出
$$
1+\sum_{m \geq 1} \frac{q^{m^{2}}}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 m}\right)}
$$

数学代写|组合学代写Combinatorics代考 请认准assignmentutor™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写