assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富，各种代写机器学习 machine learning相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|机器学习代写machine learning代考|Optical Character Recognition

OCR is an electronic or mechanical translator which translates images of any form like a scanned document, a photograph of a document, a photo of a scene or a subtitle of text to machine-coded text. OCR $[8,9]$ is a generalized method that converts text or images into printed texts digitallyso that corresponding text can be searched, edited, or compactly processed, viewed online, and used in machine processing electronically. This method is the area of science in computer vision, pattern recognition, and AI. The early versions need to train each character with visuals and applicable to one font at a time only, but the advanced versions are very popularsince they can produce a high degree of recognition for most fonts and support a number of inputs in digital format. OCR system consists of six stages, they are acquisition, segmentation, preprocessing, feature extraction, recognition, and post processing as shown in Figure 5.4.

## 计算机代写|机器学习代写machine learning代考|K-Nearest Neighbors Algorithm

KNN algorithm will be used for two purposes: Classification and Regression. Input will be the same for both, but the output will be decided based on whether we are using KNN $[21,22]$ for classification or regression. KNN is very simple and can be easily implemented, but the difficulty with this algorithm is if the size of the training set increases then computations become expensive, and also accuracy will decrease if the input features are noise components or irrelevant components. KNN algorithm [36] can be used in various fields like a diagnosis of more than one disease which shows same symptoms, analyzing financial matters before sanctioning loan, recognizing videos and images, casting votes for various parties.

For continuous variables, the distance metric used is Euclidean and for discrete variables, the distance metric is Overlap. The implementation of KNN is done by first transforming the input data set into a feature vector, then it calculates the distance between the points using Euclidean distance which is shown below.
\begin{aligned} d(a, b) &=\sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}+\cdots+\left(b_{k}-a_{k}\right)^{2}} \ &=\sqrt{\sum_{n=1}^{k}\left(b_{n}-a_{n}\right)^{2}} \end{aligned}
Where $a$ is the training data, $b$ is the test data point, $\mathrm{d}(a, b)$ is the Euclidean distance between $\mathrm{a}$ and $\mathrm{b}$ and $\mathrm{k}$ is the number of pints in the data. When this formula runs, it will calculate the distance between input data set with test data and discovers the probability of similarity with test data. Now depends on the highest probability, the classification of input data sets will be done. The working of the KNN algorithm is explained with the following steps:
Step 1: Load input data and test data.
Step 2: Choose the value of $\mathrm{K}$.
Step 3: Using the Euclidean metric or any other metric, calculate the distance between each row of input data with each point in test data.
Step 4: Arrange them in ascending order.
Step 5: Select the topmost K row.
Step 6: Based on the probability of similarity, the classification of data sets will happen.

## 计算机代写|机器学习代写machine learning代考|Conclusion and Future Scope

As new technologies are developed and advancements came into the picture, learners can learn more effectively, competently, flexibly, and contentedly. Increased attention has been given to smart education, a concept that defines learning in the digital age. With user-driven and motivational learning solutions, the proposed system aims to promote $21^{\text {st }}$ century learning. The technology advancements and the impact on student learning have been seen when we move from blackboard teaching to smart classes. Similarly, the proposed system also helps children in many ways like self-learning, easily understanding, stress relief, and interest. As the $21^{\text {st }}$ century is declared as an ‘Era of Artificial Intelligent’ where human power is replaced with robotic technology. In the same way, the proposed system also aims at teaching learners without a mentor effectively and efficiently. The design and implementation of 3D smart learning using LabVIEW are presented in this chapter. Required image is cropped using the ROI and some required characteristics are extracted and are compared with the existing template. When the two images match, the output is displayed and voice output is obtained. The future education system can be performed using the proposed system which becomes an interesting and effective tool to teach learners through online also.

## 计算机代写|机器学习代写machine learning代考|Optical Character Recognition

OCR 是一种电子或机械翻译器，可将任何形式的图像（如扫描文档、文档照片、场景照片或文本字幕）翻译成机器编码文本。光学字符识别[8,9]是一种通用的方法，它将文本或图像以数字方式转换为印刷文本，以便可以搜索、编辑或紧凑地处理相应的文本，在线查看，并以电子方式用于机器处理。这种方法是计算机视觉、模式识别和人工智能的科学领域。早期版本需要用视觉训练每个字符并且一次只适用于一种字体，但高级版本非常受欢迎，因为它们可以对大多数字体产生高度识别并支持数字格式的大量输入。OCR 系统由六个阶段组成，它们是采集、分割、预处理、特征提取、识别和后处理，如图 5.4 所示。

## 计算机代写|机器学习代写machine learning代考|K-Nearest Neighbors Algorithm

KNN 算法将用于两个目的：分类和回归。两者的输入相同，但输出将根据我们是否使用 KNN 来决定 $[21,22]$ 用于分类或回归。KNN 非常 简单且易于实现，但该算法的难点在于，如果训练集的大小增加，则计算量会变得昂贵，如果输入特征是橾声成分或不相关的成分，精度 也会降低。KNN 算法 [36] 可用于各个领域，例如诊断一种以上表现出相同症状的疾病、在批准贷款之前分析财务事项、识别视频和图 像、为各方投票。
$\mathrm{~ 对 于 连 续 变 量 ， 使 用 的 距 离 度 量 是 欧 几 里 得 ， 对 于 离 散 变 量 ， 距 离 度 量 是 重 叠}$ 用欧几里德距离计算点之间的距离，如下所示。
$$d(a, b)=\sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}+\cdots+\left(b_{k}-a_{k}\right)^{2}}=\sqrt{\sum_{n=1}^{k}\left(b_{n}-a_{n}\right)^{2}}$$

Step 6：根据相似的概率对数据集进行分类。

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师