如果你也在 怎样代写空气动力学Aerodynamics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

空气动力学是指空气在事物周围移动的方式。空气动力学的规则解释了飞机如何能够飞行。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写空气动力学Aerodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写空气动力学Aerodynamics代写方面经验极为丰富,各种代写空气动力学Aerodynamics相关的作业也就用不着说。

我们提供的空气动力学Aerodynamics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|空气动力学代写Aerodynamics代考|ENGR087

物理代写|空气动力学代写Aerodynamics代考|Hypersonic Aerodynamics

According to Newtonian impact theory, which fails to explain the classical lift generation, the pressure exerted by the air particles impinging on a surface is equal to the time rate of change of momentum vertical to the wall. Using this principle we can find the pressure exerted by the air particles on the wall which is inclined with free stream with angle $\theta_w$. Since the velocity, as shown in Fig. 1.8, normal to the wall is $U_n$ the time rate of change of momentum becomes $p=\rho U_n^2$.
If we write $\mathrm{U}n=\mathrm{U} \sin \theta_w$, the surface pressure coefficient reads as $$ c_p=\frac{p-p{\infty}}{\frac{1}{2} \rho_{\infty} U^2}=2 \sin ^2 \theta_w-\frac{2}{\gamma M^2}
$$
The free stream Mach number $\mathrm{M}$ is always high for hypersonic flows. Therefore, its square $\mathrm{M}^2 \gg 1$ is always true. If the wall inclination under consideration is sufficiently large i.e. $\theta_w$ is greater than $35^{\circ}-40^{\circ}$, the second term in Eq. $1.26$ becomes negligible compared to the first term. This allows us to obtain a simple expression for the surface pressure at hypersonic speeds as follows
$$
c_F \simeq 2 \sin ^2 \theta_{\mathrm{W}}
$$
Now, we can find the lift and the drag force coefficients for hypersonic aerodynamics based on the impact theory. According to Fig. $1.8$ the sectional lift coefficient reads as
$$
c_L=2 \sin ^2 \theta_w \cos \theta_w
$$
and the sectional drag coefficient becomes
$$
c_D=2 \sin ^3 \theta_w
$$

物理代写|空气动力学代写Aerodynamics代考|The Piston Theory

The piston theory is an approximate theory which works for thin wings at high speeds and at small angles of attack. If the characteristic thickness ratio of a body is $\tau$ and $\mathrm{M} \tau$ is the hypersonic similarity parameter then for $\mathrm{M} \tau \gg 1$ the Newtonian impact theory works well. For the values of $M \tau<1$ the piston theory becomes applicable. Since $\tau$ is small for thin bodies, at high Mach numbers the shock generated at the leading edge is a highly inclined weak shock. This makes the flow region between the surface and the inclined shock a thin boundary layer attached to the surface. If the surface pressure at the boundary layer is $p$ and the vertical velocity on the surface is $w_a$, then the flow can he modeled as the wedge flow as shown in Fig. 1.9.

The piston theory is based on an analogy with a piston moving at a velocity w in a tube to create compression wave. The ratio of compression pressure created in the tube to the pressure before passing of the piston reads as Lieppmann and Roshko (1963); Hayes and Probstien (1966),
$$
\frac{p}{p_{\infty}}=\left[1+\frac{\gamma-1}{2} \frac{w}{a_{\infty}}\right]^{\frac{2 \gamma}{\gamma-1}}
$$
Here, $a_{\infty}$ is the speed of sound for the gas at rest. If we linearize Eq. $1.30$ by expanding into the series and retain the first two terms, the pressure ratio reads as
$$
\frac{p}{p_{\infty}} \cong 1+\gamma \frac{w_a}{a_{\infty}}
$$
wherein, $w_a$ is the time dependent vertical velocity which satisfies the following condition: $w_a \ll a_{\infty}$. The expression for the vertical velocity in terms of the body motion and the free stream velocity is given by
$$
w_a=\frac{\partial z_a}{\partial t}+U \frac{\partial z_a}{\partial x}
$$
Equation $1.31$ is valid only for the hypersonic similarity values in, $0<\mathrm{M} \tau<0.15$, and as long as the body remains at small angles of attack during the motion while the vertical velocity changes according to Eq. 1.32. For higher values of the hypersonic similarity parameter, the higher order approximations will be provided in the relevant chapter.

物理代写|空气动力学代写Aerodynamics代考|ENGR087

空气动力学代考


物理代写|空气动力学代写空气动力学代考|高超声速空气动力学


根据牛顿的冲击理论(该理论无法解释经典的升力产生),空气粒子撞击表面所产生的压力等于垂直于壁面的动量的时间变化率。利用这一原理,我们可以求出随自由气流倾斜的壁面上的空气颗粒所施加的压力,其角度为$\theta_w$。由于速度,如图1.8所示,垂直于壁面的速度为$U_n$,动量的时间变化率为$p=\rho U_n^2$ .
如果我们写$\mathrm{U}n=\mathrm{U} \sin \theta_w$,表面压力系数为$$ c_p=\frac{p-p{\infty}}{\frac{1}{2} \rho_{\infty} U^2}=2 \sin ^2 \theta_w-\frac{2}{\gamma M^2}
$$
自由流马赫数$\mathrm{M}$对于高超声速流来说总是很高的。因此,其方$\mathrm{M}^2 \gg 1$始终为真。如果考虑的墙倾角足够大,即$\theta_w$大于$35^{\circ}-40^{\circ}$, Eq. $1.26$中的第二项与第一项相比可以忽略不计。这使得我们可以得到高超声速下表面压力的简单表达式
$$
c_F \simeq 2 \sin ^2 \theta_{\mathrm{W}}
$$
现在,我们可以根据冲击理论找到高超声速空气动力学的升力系数和阻力系数。根据图$1.8$,截面升力系数为
$$
c_L=2 \sin ^2 \theta_w \cos \theta_w
$$
,截面阻力系数为
$$
c_D=2 \sin ^3 \theta_w
$$

物理代写|空气动力学代写空气动力学代考|活塞理论


活塞理论是一种近似理论,适用于薄翼高速和小迎角的情况。如果一个物体的特征厚度比是$\tau$, $\mathrm{M} \tau$是高超声速相似参数,那么对于$\mathrm{M} \tau \gg 1$,牛顿冲击理论是有效的。对于$M \tau<1$的值,活塞理论就变得适用了。由于$\tau$对于薄体来说很小,在高马赫数时,前缘产生的激波是高度倾斜的弱激波。这使得表面与倾斜激波之间的流动区域成为附着在表面的薄边界层。如果边界层表面压力为$p$,表面垂直速度为$w_a$,则可以将流动建模为如图1.9所示的楔形流动。


活塞理论是建立在一个类比的基础上,活塞在管子中以w的速度运动,产生压缩波。在管子中产生的压缩压力与活塞通过前的压力之比读作Lieppmann和Roshko (1963);Hayes和Probstien (1966),
$$
\frac{p}{p_{\infty}}=\left[1+\frac{\gamma-1}{2} \frac{w}{a_{\infty}}\right]^{\frac{2 \gamma}{\gamma-1}}
$$
这里,$a_{\infty}$是气体静止时的声速。如果我们线性化Eq. $1.30$,将级数展开并保留前两项,则压力比为
$$
\frac{p}{p_{\infty}} \cong 1+\gamma \frac{w_a}{a_{\infty}}
$$
,其中$w_a$为随时间变化的垂直速度,满足以下条件:$w_a \ll a_{\infty}$。用身体运动和自由流速度表示的垂直速度的表达式为
$$
w_a=\frac{\partial z_a}{\partial t}+U \frac{\partial z_a}{\partial x}
$$
方程$1.31$只适用于,$0<\mathrm{M} \tau<0.15$中的高超声速相似值,并且只要在运动过程中身体保持小迎角,而垂直速度根据式1.32变化。对于更高的高超声速相似参数值,更高阶近似将在相关章节中提供

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写