如果你也在 怎样代写代数学Algebra这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
现代代数是数学的一个分支,涉及各种集合(如实数、复数、矩阵和矢量空间)的一般代数结构,而不是操作其个别元素的规则和程序。
assignmentutor-lab™ 为您的留学生涯保驾护航 在代写代数学Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写代数学Algebra代写方面经验极为丰富,各种代写代数学Algebra相关的作业也就用不着说。
我们提供的代数学Algebra及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

数学代写|代数学代写Algebra代考|Matrices and Matrix Operations
One more concept that we will need before we start running with linear algebra is that of a matrix, which is a $2 \mathrm{D}$ array of numbers like
$$
A=\left[\begin{array}{cc}
1 & 3 \
2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
3 & 0 & 2 \
0 & -1 & 1
\end{array}\right] \text {. }
$$
Note that every row of a matrix must have the same number of entries as every other row, and similarly every column must have the same number of entries as every other column. The rows and columns must line up with each other, and every spot in the matrix (i.e., every intersection of a row and column) must contain an entry. For example, the following are not valid matrices:
$$
\left[\begin{array}{ccc}
1 & 2 & 3 \
& 4 & 5
\end{array}\right] \text { and }\left[\begin{array}{cccc}
2 & -3 & & 4 \
& 1 & 2 & 0
\end{array}\right] \text {. }
$$
We typically denote matrices by uppercase letters like $A, B, C, \ldots$, and we write their entries via the corresponding lowercase letters, together with subscripts that indicate which row and column (in that order) the entry comes from. For example, if $A$ and $B$ are as above, then $a_{1,2}=3$, since the entry of $A$ in the 1st row and 2 nd column is 3 . Similarly, $a_{2,1}=2$ and $b_{2,3}=1$. The entry in the $i$-th row and $j$-th column is also called its ” $(i, j)$-entry”, and we sometimes alternatively denote it using square brackets like $[A] i, j$. For example, the (2,1)-entry of $B$ is $b_{2,1}=[B]_{2,1}=0$.
The number of rows and columns that a matrix has are collectively referred to as its size, and we always list the number of rows first. For example, the matrix $A$ above has size $2 \times 2$, whereas $B$ has size $2 \times 3$. The set of all real matrices with $m$ rows and $n$ columns is denoted by $\mathcal{M}{m, n}$, or simply by $\mathcal{M}_n$ if $m=n$ (in which case the matrix is called square). So if $A$ and $B$ again refer to the matrices displayed above, then $A \in \mathcal{M}_2$ and $B \in \mathcal{M}{2,3}$.
数学代写|代数学代写Algebra代考|Matrix Addition and Scalar Multiplication
We do not yet have a nice geometric interpretation of matrices like we did for vectors (we will develop a geometric understanding of matrices in the next section), but for now we note that we can define addition and scalar multiplication for matrices in the exact same entrywise manner that we did for vectors.
Suppose $A, B \in \mathcal{M}{m, n}$ are matrices and $c \in \mathbb{R}$ is a scalar. Then the sum $A+B$ and scalar multiplication $c A$ are the $m \times n$ matrices whose $(i, j)-$ entries, for each $1 \leq i \leq m$ and $1 \leq j \leq n$, are $$ [A+B]{i, j}=a_{i, j}+b_{i, j} \quad \text { and } \quad[c A]{i, j}=c a{i, j},
$$
respectively.
We also use $O$ to denote the zero matrix whose entries all equal 0 (or $O_{m, n}$ if we wish to emphasize or clarify that it is $m \times n$, or $O_n$ if it is $n \times n$ ). Similarly, we define matrix subtraction $(A-B=A+(-1) B)$ and the negative of a matrix $(-A=(-1) A)$ in the obvious entrywise ways. There is nothing fancy or surprising about how these matrix operations work, but it is worthwhile to work through a couple of quick examples to make sure that we are comfortable with them.
Suppose $A=\left[\begin{array}{cc}1 & 3 \ 2 & -1\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \ 0 & 1\end{array}\right]$, and $C=\left[\begin{array}{ccc}1 & 0 & 1 \ 0 & -1 & 1\end{array}\right]$. Compute
a) $A+B$,
b) $2 A-3 B$, and
c) $A+2 C$.

代数学代写
数学代写|代数学代写algebra代考|矩阵与矩阵运算
.
在开始使用线性代数之前,我们还需要了解一个矩阵的概念,它是一个$2 \mathrm{D}$的数字数组,如
$$
A=\left[\begin{array}{cc}
1 & 3 \
2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
3 & 0 & 2 \
0 & -1 & 1
\end{array}\right] \text {. }
$$
请注意,矩阵的每一行必须与其他行有相同的条目数,同样,每列也必须与其他列有相同的条目数。行和列必须彼此对齐,矩阵中的每个点(即行和列的每个交集)必须包含一个条目。例如,以下是无效矩阵:
$$
\left[\begin{array}{ccc}
1 & 2 & 3 \
& 4 & 5
\end{array}\right] \text { and }\left[\begin{array}{cccc}
2 & -3 & & 4 \
& 1 & 2 & 0
\end{array}\right] \text {. }
$$
我们通常用像$A, B, C, \ldots$这样的大写字母表示矩阵,并通过相应的小写字母写它们的条目,以及下标(以该顺序)表示条目来自哪一行和哪一列。例如,如果$A$和$B$和上面一样,那么$a_{1,2}=3$,因为在第1行和第2列中$A$的条目是3。类似地,$a_{2,1}=2$和$b_{2,3}=1$。$i$ -th行和$j$ -th列中的条目也被称为“$(i, j)$ -entry”,我们有时也用方括号表示它,如$[A] i, j$。例如,$B$的(2,1)-条目是$b_{2,1}=[B]_{2,1}=0$ .
矩阵的行数和列数统称为矩阵的大小,我们总是先列出行数。例如,上面的矩阵$A$的大小为$2 \times 2$,而$B$的大小为$2 \times 3$。包含$m$行和$n$列的所有实矩阵集合用$\mathcal{M}{m, n}$表示,如果$m=n$则用$\mathcal{M}_n$表示(在这种情况下,矩阵称为方阵)。因此,如果$A$和$B$再次引用上面显示的矩阵,那么$A \in \mathcal{M}_2$和$B \in \mathcal{M}{2,3}$
数学代写|代数学代写algebra代考|矩阵加法和标量乘法
.
我们还没有像对向量那样对矩阵进行很好的几何解释(我们将在下一节中对矩阵进行几何理解),但现在我们注意到,我们可以用对向量所做的完全相同的入口方式定义矩阵的加法和标量乘法
假设$A, B \in \mathcal{M}{m, n}$是矩阵,$c \in \mathbb{R}$是标量。然后,$A+B$和标量乘法$c A$是$m \times n$矩阵,其$(i, j)-$项分别为$1 \leq i \leq m$和$1 \leq j \leq n$的$$ [A+B]{i, j}=a_{i, j}+b_{i, j} \quad \text { and } \quad[c A]{i, j}=c a{i, j},
$$
。
我们还使用$O$表示所有项都等于0的零矩阵(如果我们希望强调或澄清它是$m \times n$,则用$O_{m, n}$表示,如果是$n \times n$则用$O_n$表示)。类似地,我们以明显的入口方式定义矩阵减法$(A-B=A+(-1) B)$和矩阵$(-A=(-1) A)$的负数。关于这些矩阵运算的工作原理,并没有什么奇特或令人惊讶的地方,但有必要通过几个简单的例子来确保我们熟悉它们。
假设$A=\left[\begin{array}{cc}1 & 3 \ 2 & -1\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \ 0 & 1\end{array}\right]$和$C=\left[\begin{array}{ccc}1 & 0 & 1 \ 0 & -1 & 1\end{array}\right]$。计算
a) $A+B$,
b) $2 A-3 B$,
c) $A+2 C$

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
R语言代写 | 问卷设计与分析代写 |
PYTHON代写 | 回归分析与线性模型代写 |
MATLAB代写 | 方差分析与试验设计代写 |
STATA代写 | 机器学习/统计学习代写 |
SPSS代写 | 计量经济学代写 |
EVIEWS代写 | 时间序列分析代写 |
EXCEL代写 | 深度学习代写 |
SQL代写 | 各种数据建模与可视化代写 |