assignmentutor-lab™ 为您的留学生涯保驾护航 在代写模拟电路analog circuit方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写模拟电路analog circuit代写方面经验极为丰富，各种代写模拟电路analog circuit相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电气工程代写|模拟电路代写analog circuit代考|Gauss Elimination

Gaussian elimination is a well-known method to solve matrix equations and is often part of elementary classes on linear algebra. It produces both the solution and the matrix inverse at the same time. The inverse matrix tends to suffer from round-off errors and using it to solve for other right-hand sides (rhs) can result in poor accuracy. Its main weakness is it requires the right-hand side (rhs) to be known and manipulated along with the operations, and for the cases the inverse matrix is not needed, it takes up to three time longer to complete than other methods [11].

We will spend a bit of time on this method since it exemplifies some common issues. Let us consider a set of three equations:
$$\left{\begin{array}{c} 3 x+2 y+z=7 \ x+3 y+2 z=5 \ 2 x+y+3 z=12 \end{array}\right.$$
In matrix form, this becomes
$$\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}$$

where
$$\boldsymbol{A}=\left(\begin{array}{lll} 3 & 2 & 1 \ 1 & 3 & 2 \ 2 & 1 & 3 \end{array}\right) \quad \boldsymbol{x}=\left(\begin{array}{l} x \ y \ z \end{array}\right) \quad \boldsymbol{b}=\left(\begin{array}{c} 7 \ 5 \ 12 \end{array}\right)$$
It is straightforward to see the following properties are true:

• The rows in the matrix equation are interchangeable. It is just a matter of ordering the equations. The second equation can exchange places with the first, for example, with no change in the solution.
• Naturally we can add rows together, with a weight, at will as long as we also do the same operation on the rhs. For example, row 1-3*(row2) will result in a new row $-7 y-5 z=-8$ that does not contain any $x$. No information is added or destroyed when this new row is used in place of one of the original two rows.

## 电气工程代写|模拟电路代写analog circuit代考|LU Decomposition

A popular type of matrix solvers is the LU decomposition method. Here one eliminates the problem of the rhs by writing the matrix as a product of two other matrices $\boldsymbol{L}, \boldsymbol{U}$ such that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$. The $\boldsymbol{L}$ matrix has the lower-left triangle filled including the diagonal, and $\boldsymbol{U}$ has the upper-right triangle field with zeros in the diagonal. This way of writing the equation results in another way of doing back substitution like earlier, but it no longer depends on the rhs and as long as the matrix is not changing, it is often a better method. In more detail
$$\boldsymbol{A} \boldsymbol{x}=(\boldsymbol{L} \boldsymbol{U}) \boldsymbol{x}=\boldsymbol{L}(\boldsymbol{U} \boldsymbol{x})=\boldsymbol{b}$$
By annotating $\boldsymbol{y}=\boldsymbol{U} \boldsymbol{x}$, we have a new set of equations
$$L y=b$$
and
$$U x=y$$
The advantage here is that solving triangular equations is quite trivial; it is a matter of row by row direct substitution. For the details on how to perform the decomposition for the general case, we refer the interested reader to [11]. Here we can use the previous example, and we note the Gaussian elimination steps produced a matrix in echelon form or upper triangle form. This is $\boldsymbol{U}$. We have
$$\boldsymbol{U}=\left(\begin{array}{ccc} 3 & 2 & 1 \ 0 & \frac{7}{3} & \frac{5}{3} \ 0 & 0 & \frac{18}{7} \end{array}\right)$$

# 模拟电路代考

## 电气工程代写|模拟电路代写analog circuit代考|Gauss Elimination

$\$ \$$Neft$$
3 x+2 y+z=7 x+3 y+2 z=52 x+y+3 z=12
$$正确的。 Inmatrix form, thisbecomes \ \$$

$$\boldsymbol{A}=\left(\begin{array}{llllllll} 3 & 2 & 1 & 1 & 3 & 22 & 1 & 3 \end{array}\right) \quad \boldsymbol{x}=\left(\begin{array}{ll} x y z \end{array}\right) \quad \boldsymbol{b}=\left(\begin{array}{lll} 7 & 5 & 12 \end{array}\right)$$

• 矩阵方程中的行是可以互换的。这只是对方程进行排序的问题。第二个方程可以与第一个方程交换位置，例如，解决方案没有变化。
• 当然，我们可以随意将行加上权重，只要我们也在 rhs 上执行相同的操作。例如，第 1-3*(row2) 行将产生一个新行 $-7 y-5 z=-8$ 不包含任 何 $x$. 当使用此新行代替原始两行之一时，不会添加或破坏任何信息。

## 电气工程代写|模拟电路代写analog circuit代考|LU Decomposition

$$\boldsymbol{A} \boldsymbol{x}=(\boldsymbol{L} \boldsymbol{U}) \boldsymbol{x}=\boldsymbol{L}(\boldsymbol{U} \boldsymbol{x})=\boldsymbol{b}$$

$$L y=b$$

$$U x=y$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师