assignmentutor-lab™ 为您的留学生涯保驾护航 在代写微积分Calculus方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写微积分Calculus代写方面经验极为丰富，各种代写微积分Calculus相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|微积分代写Calculus代写|Exponentials and Logarithms

If $a$ is multiplied by itself as $a d a \cdots$ with $m$ factors, the product is written as $a^m$. Furthermore, by definition, $a^{-m}=1 / a^m$. From this it follows that
\begin{aligned} a^m a^n &=a^{m+n}, \ \frac{a^m}{a^n} &=a^{m-n}, \ a^0 &=\frac{a^m}{a^m}=1, \ \left(a^m\right)^n &=a^{m n}, \ (a b)^m &=a^m b^m . \end{aligned}
If $b^n=a, b$ is called the $n$th root of $a$ and is written as $b=a^{1 / n}$. If $m$ and $n$ are integers,
$$a^{m / n}=\left(a^{1 / n}\right)^m .$$
The meaning of exponents can be extended to irrational numbers (frame 84) and the above relations also apply with irrational exponents, so $\left(a^x\right)^b=a^{x b}$, etc.
The definition of $\log x$ (the logarithm of $x$ to the base 10$)$ is
$$x=10^{\log x} .$$
The following important relations can easily be seen to apply to logarithms (frame 91):
\begin{aligned} \log (a b) &=\log a+\log b, \ \log (a / b) &=\log a-\log b, \ \log \left(a^n\right) &=n \log a . \end{aligned}
The logarithm of $x$ to another base $r$ is written as $\log _r x$ and is defined by
$$x=r^{\log _r x} .$$
The above three relations for logarithms of $a$ and $b$ are correct for logarithms to any base provided the same base is used for all the logarithms in each equation.

## 数学代写|微积分代写Calculus代写|The Limit of a Function

Before diving into differential calculus, it is essential to understand the concept of the limit of a function. The idea of a limit may be new to you, but it is at the heart of calculus, and it is essential to understand the material in this section before going on. Once you understand the concept of limits, you should be able to grasp the ideas of differential calculus quite readily.
Limits are so important in calculus that we will discuss them from two different points of view. First, we will discuss limits from an intuitive point of view. Then, we will give a precise mathematical definition.

Here is a little bit of mathematical shorthand, which will be useful in this section. Suppose a variable $x$ has values lying in an interval with the following properties:

1. The interval surrounds some number $a$.
2. The difference between $x$ and $a$ is less than another number $B$, where $B$ is any number that you choose.
3. $x$ does not take the particular value $a$. (We will see later why this point is excluded.)
The above three statements can be summarized by the following:
$\begin{array}{ll}|x-a|>0 & \text { (This statement means } x \text { cannot have the value } a \text {.) } \ |x-a|<B & \text { (The magnitude of the difference between } x \text { and } a \text { is less than } \ & \text { the arbitrary number } B \text {.) }\end{array}$
These relations can be combined in the single statement:
$$0<|x-a|<B .$$
(If you need to review the symbols used here, see frame 20.)
The values of $x$ which satisfy $0<|x-a|<B$ are indicated by the interval along the $x$-axis shown in the figure.

# 微积分代考

## 数学代写|微积分代写微积分代写|指数和对数

. .

\begin{aligned} a^m a^n &=a^{m+n}, \ \frac{a^m}{a^n} &=a^{m-n}, \ a^0 &=\frac{a^m}{a^m}=1, \ \left(a^m\right)^n &=a^{m n}, \ (a b)^m &=a^m b^m . \end{aligned}

$$a^{m / n}=\left(a^{1 / n}\right)^m .$$

$\log x$ ($x$对底数10的对数$)$是
$$x=10^{\log x} .$$

\begin{aligned} \log (a b) &=\log a+\log b, \ \log (a / b) &=\log a-\log b, \ \log \left(a^n\right) &=n \log a . \end{aligned}
$x$对另一个底数$r$的对数写为$\log _r x$并由
$$x=r^{\log _r x} .$$

## 数学代写|微积分代写微积分代写|函数的极限

1. 间隔围绕某个数字 $a$.
2. $x$ 和 $a$ 是否小于另一个数 $B$，其中 $B$
3. $x$ 不取特定的值 $a$。
以上三个陈述可以总结为:
.
.
.
.
$\begin{array}{ll}|x-a|>0 & \text { (This statement means } x \text { cannot have the value } a \text {.) } \ |x-a|<B & \text { (The magnitude of the difference between } x \text { and } a \text { is less than } \ & \text { the arbitrary number } B \text {.) }\end{array}$这些关系可以组合在单个语句中:
$$0<|x-a|<B .$$
(如果您需要检查这里使用的符号，请参阅第20帧)
的值 $x$ 满足条件 $0<|x-a|<B$ 由沿 $x$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师