如果你也在 怎样代写凸优化Convex Optimization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

凸优化是数学优化的一个子领域,研究的是凸集上凸函数最小化的问题。许多类凸优化问题都有多项时间算法,而数学优化一般来说是NP困难的。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写凸优化Convex Optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写凸优化Convex Optimization代写方面经验极为丰富,各种代写凸优化Convex Optimization相关的作业也就用不着说。

我们提供的凸优化Convex Optimization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|凸优化作业代写Convex Optimization代考|MATH3204

数学代写|凸优化作业代写Convex Optimization代考|Methodological Problems

Theoretical and algorithmic achievements of multi-objective optimization have implied also the expansion of respective applications. Among applied multiobjective optimization problems, expensive multimodal black-box problems are rather frequent. However, they constitute still a relatively little researched subfield of multi-objective optimization and deserve more attention from researchers. Since the statistical models based single-objective optimization algorithms well correspond to the challenges of single-objective global optimization of expensive black-box functions, they were generalized to the multi-objective case. As shown in the previous sections, the theoretical generalization is rather straightforward. Some experimental investigation was performed to find out how much the generalization corresponds to the expectations of their suitability for multi-objective optimization.
General methodological concepts of testing and comparison of mathematical programming algorithms and software are well developed; see [131]. The methodology, called Competitive Testing in [82], should normally be applied for the comparison of the well-established algorithms. This methodology is also extended for testing and comparison of multi-objective optimization algorithms; see. e.g.. [42, $60,135,266,267]$. In the case of the well-researched classes of problems (e.g., convex multi-objective optimization), this methodology is universally applicable, only the selection of test functions should be specially selected taking into account the properties of the considered sub-class of problems, e.g., considered in $[66,129]$. The tests, based on special cases of real world applied problems, can be very useful for evaluating the efficiency of the respective algorithms; see, e.g., [154] where multi-objective portfolio problems are used for testing the algorithms aimed to distribute solutions uniformly in the Pareto optimal set.

However, the standard testing methodology is not well suitable for the algorithms considered in this chapter. The first difficulty is caused by the main feature of the targeted problems: they are supposed to be expensive. Therefore, a solution, found by an optimization algorithm applied, normally is rather rough. An optimization algorithm is as much useful as much its application aids a decision maker in making a final decision in the conditions of uncertainty reduced because of the application of the algorithm. The quantitative assessment of such a criterion of an algorithm is difficult.

数学代写|凸优化作业代写Convex Optimization代考|Test Functions

Bi-objective problems with one and two variables were chosen for the experiments to enable visual analysis of the results.

Some experiments were performed using objective functions of a single variable. Experimentation with one-dimensional problems was extensive during the development of the single-objective methods based on statistical models; see, e.g., $[139,208,216]$. These test functions have been used also to demonstrate the performance of the Lipschitz model based algorithms in Section 6.2.5: Rastr (6.46), Fo\&Fle (6.47), and Schaf (6.48). The feasible objective regions with the highlighted Pareto front of the considered test functions are shown in Figures 6.5, 6.6, and 6.7.

Two bi-objective test problems of two variables are chosen for the experimentation. The test problems of two variables are chosen similarly to the choice of one-dimensional problems: the first multi-objective test problem is composed using a typical test problem for a single-objective global optimization, and the second one is chosen from the set of functions frequently used for testing multi-objective algorithms. The first test function Shek (1.6) is composed of two Shekel functions which are frequently used for testing global optimization algorithms, see, e.g., [216]. A rather simple multimodal case is intended to be considered, so the number of minimizers of both objectives is selected equal to two. The objective functions are represented by contour lines in Figure 1.3. The second problem Fo\&Fle, (1.5), is especially difficult from the point of view of global minimization, since the functions $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ in (1.5) are similar to the most difficult objective function whose response surface is comprised of a flat plateau over a large part of the feasible decision region, and of the unknown number of sharp spikes. The estimates of parameters of the statistical model of (1.5) are biased towards the values that represent the “flat” part of response surface. The discrepancy between the statistical model and the modeled functions can negatively influence the efficiency of the statistical models based algorithms.

The selection of test problems can be summarized as follows: two problems, (6.46) and (1.6), are constructed generalizing typical test problems of global optimization, and two other problems, (6.48) and (1.5), are selected from a set of non-convex multi-objective test problems. The former problems are well represented by the considered above statistical model, and the latter ones are not. Both objective functions of problem (1.5) are especially difficult for global optimization, and their properties do not correspond to the properties predictable using the statistical model.

数学代写|凸优化作业代写Convex Optimization代考|MATH3204

凸优化代写

数学代写|凸优化作业代写凸面优化代考|方法学问题

.


多目标优化的理论和算法成就也意味着各自应用的扩展。在应用的多目标优化问题中,代价昂贵的多模态黑箱问题较为常见。但它们仍然是多目标优化研究中研究较少的一个分支领域,值得研究人员关注。由于基于统计模型的单目标优化算法很好地应对了昂贵黑盒函数的单目标全局优化的挑战,因此将其推广到多目标情况。如前几节所示,理论概括相当简单。进行了一些实验研究,以确定其泛化与期望的多目标优化适用性有多大的对应关系。数学规划算法和软件的测试和比较的一般方法概念发展得很好;见[131]。该方法在[82]中称为竞争性测试,通常应用于比较已建立的算法。该方法也被扩展到多目标优化算法的测试和比较;看。例:[42, $60,135,266,267]$ .]对于研究得很好的问题类别(如凸多目标优化),这种方法是普遍适用的,只有测试函数的选择应特别选择,考虑到所考虑的子类问题的性质,如$[66,129]$中所考虑的问题。基于实际应用问题的特殊情况的测试对于评估各自算法的效率非常有用;参见,例如[154],其中多目标投资组合问题用于测试旨在在帕累托最优集中均匀分配解决方案的算法。


然而,标准的测试方法并不很适合本章所考虑的算法。第一个困难是由目标问题的主要特征引起的:它们应该是昂贵的。因此,通过应用优化算法找到的解通常是相当粗糙的。优化算法的有用程度取决于它的应用如何帮助决策者在由于算法的应用而减少了不确定性的条件下做出最终决策。对这种算法准则的定量评估是困难的

数学代写|凸优化作业代写凸面优化代考|测试函数


选择一个和两个变量的双目标问题进行实验,以便对结果进行可视化分析


有些实验使用单一变量的目标函数进行。在发展基于统计模型的单目标方法期间,对一维问题进行了广泛的实验;例如,$[139,208,216]$。这些测试函数也被用来演示基于Lipschitz模型的算法的性能,在第6.2.5节:Rastr (6.46), Fo&Fle(6.47),和Schaf(6.48)。图6.5、6.6和6.7显示了考虑的测试函数的帕累托前突出显示的可行目标区域


选择两个变量的双目标检验问题进行实验。两个变量的测试问题的选择与一维问题的选择类似:第一个多目标测试问题是由单目标全局优化的典型测试问题组成的,第二个多目标测试问题是从测试多目标算法的常用函数集中选择的。第一个测试函数Shek(1.6)由两个经常用于测试全局优化算法的Shekel函数组成,如[216]。我们打算考虑一个相当简单的多模态情况,因此选择两个目标的最小化器的数量为2。目标函数用图1.3中的等高线表示。第二个问题Fo&Fle(1.5),从全局最小化的角度来看尤其困难,因为(1.5)中的函数$f_1(\mathbf{x})$和$f_2(\mathbf{x})$类似于最困难的目标函数,其响应面由可行决策区域的大部分上的平坦平台和数量未知的尖峰组成。统计模型(1.5)的参数估计倾向于表示响应面“平坦”部分的值。统计模型与被建模函数之间的差异会对基于统计模型的算法的效率产生负面影响


测试问题的选择可以总结为:两个问题(6.46)和(1.6)是由全局优化的典型测试问题泛化构造的,另外两个问题(6.48)和(1.5)是从一组非凸多目标测试问题中选取的。上述统计模型很好地反映了前者的问题,而后者则不然。问题(1.5)的两个目标函数对全局优化特别困难,其性质与统计模型预测的性质不一致

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写