如果你也在 怎样代写密码学与网络安全cryptography and network security这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

密码学是对安全通信技术的研究,它只允许信息的发送者和预定接收者查看其内容。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写密码学与网络安全cryptography and network security方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写密码学与网络安全cryptography and network security代写方面经验极为丰富,各种代写密码学与网络安全cryptography and network security相关的作业也就用不着说。

我们提供的密码学与网络安全cryptography and network security及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|密码学与网络安全代写cryptography and network security代考|CS6260

计算机代写|密码学与网络安全代写cryptography and network security代考|Constructing a Binary Huffman Code

Given a discrete source, a Huffman code can be constructed along the following steps:

  1. The source symbols are arranged in decreasing probability. The least probable symbols receive the assignments 0 and 1 .
  2. Both symbols are combined to create a new source symbol, whose probability is the sum of the original ones. The list is reduced by one symbol. The new symbol is positioned in the list according to its probability.
  3. This procedure continues until the list has only two symbols, which receive the assignments 0 and 1 .
  4. Finally, the binary codeword for each symbol is obtained by a reverse process.
    In order to explain the algorithm, consider the source of Table 4.9.
    The first phase is to arrange the symbols in a decreasing order of probability. Assign the values 0 and 1 to the symbols with the smallest probabilities. They are, then, combined to create a new symbol. The probability associated with the new symbol is the sum of the previous probabilities. The new symbol is repositioned in the list, to maintain the same decreasing order for the probabilities. The procedure is shown in Figure 4.2.
    The procedure is repeated until only two symbols remain, which are assigned to 0 and 1, as shown in Figure 4.3.

The procedure is repeated to obtain all codewords, by reading the digits in inverse order, from Phase IV to Phase I, as illustrated in Figure 4.4. Following the arrows, for symbol $x_4$, one finds the codeword 011 .

计算机代写|密码学与网络安全代写cryptography and network security代考|Information Transmission and Channel Capacity

Claude Elwood Shannon (1916-2001) is considered the father of information theory. In 1948, he published a seminal article on the mathematical concept of information, which is one of the most cited for decades. Information left the Journalism field to occupy a more formal area, as part of probability theory.

The entropy, in the context of information theory, was initially defined by Ralph Vinton Lyon Hartley (1888-1970), in the article “Transmission of Information,” published by the Bell System Technical Journal, in July 1928, ten years before the formalization of the concept by Claude Shannon.

Shannon’s development was also based on Harry Nyquist’s work (Harry Theodor Nyquist, 1889-1976), which determined the sampling rate as a function of frequency necessary to reconstruct an analog signal using a set of discrete samples.

In an independent way, Andrei N. Kolmogorov developed his complexity theory, during the 1960 decade. It was a new information theory based on the length of an algorithm developed to describe a certain data sequence. He used Alan Turing’s machine in this new definition. Under certain conditions, Kolmogorov’s and Shannon’s definitions are equivalent.

The idea of relating the number of states of a system with a physical measure, although, dates back to the XIX century. Rudolph Clausius proposed the term entropy for such a measure in 1895.

Entropy comes from the Greek word for transformation and, in physics, is related to the logarithm of the ratio between the final and initial temperature of a system or to the ratio of the heat variation and the temperature of the same system.

Shannon defined the entropy of an alphabet at the negative of the mean value of the logarithm of the symbols’ probability. This way, when the symbols are equiprobable, the definition is equivalent to Nyquist’s.

But, as a more generic definition, Shannon’s entropy can be used to compute the capacity of communication channels. Most part the researchers’ work is devoted to either compute the capacity or to develop error correcting codes to attain that capacity.

Shannon died on February 24, 2001, as a victim of a disease named after the physician Aloysius Alzheimer. According to his wife, he lived a quiet life but had lost his capacity to retain information.

计算机代写|密码学与网络安全代写cryptography and network security代考|CS6260

密码学与网络安全代考

计算机代写|密码学与网络安全代写cryptography and network security代考|构造二进制霍夫曼码


给定一个离散源,霍夫曼码可以按照以下步骤构造

  1. 源符号按递减概率排列。
  2. 这两个符号被组合起来创建一个新的源符号,其概率是原符号的和。这个列表减少了一个符号。新符号根据其概率在列表中定位。
  3. 此过程继续进行,直到列表中只有两个符号,它们接受赋值0和1。
  4. 最后,通过反向过程获得每个符号的二进制码字。为了解释算法,考虑表4.9的来源。第一个阶段是将符号按概率递减顺序排列。将0和1赋值给概率最小的符号。然后,它们结合在一起形成一个新的符号。与新符号相关的概率是先前概率的和。新的符号在列表中重新定位,以保持相同的概率递减顺序。该过程如图4.2所示。
    重复这个过程,直到只剩下两个符号,它们被赋值为0和1,如图4.3所示

    重复这个过程,从第IV阶段到第I阶段,通过倒序读取数字,得到所有的码字,如图4.4所示。沿着箭头,对于符号$x_4$,可以找到码字011 .
    计算机代写|密码学与网络安全代写cryptography and network security代考|信息传输和通道容量 . name
    克劳德·埃尔伍德·香农(1916-2001)被认为是信息论之父。1948年,他发表了一篇关于信息的数学概念的开创性文章,这是几十年来被引用最多的文章之一。作为概率论的一部分,信息离开了新闻领域,占据了一个更正式的领域

    在信息论的背景下,熵最初是由拉尔夫·文顿·里昂·哈特利(1888-1970)在1928年7月《贝尔系统技术杂志》发表的文章《信息的传输》中定义的,比克劳德·香农的概念正式形成早了十年

    Shannon的发展也是基于Harry Nyquist的工作(Harry Theodor Nyquist, 1889-1976),该工作确定了使用一组离散样本重构模拟信号所需的频率函数的采样率

    Andrei N. Kolmogorov在1960年代以一种独立的方式发展了他的复杂性理论。它是一种新的信息理论,基于描述特定数据序列的算法的长度。他在这个新的定义中使用了艾伦·图灵的机器。在一定条件下,Kolmogorov和Shannon的定义是等价的

    将系统的状态数与物理度量联系起来的想法可以追溯到19世纪。鲁道夫·克劳修斯(Rudolph Clausius)在1895年提出了熵一词来表示这种度量

    熵来自希腊单词“变换”,在物理学中,它与一个系统的最终温度与初始温度之比的对数有关,或与同一系统的热变化与温度之比有关

    Shannon定义了字母的熵为符号概率对数的均值的负值。这样,当符号是等概率时,定义等价于Nyquist的。

    但是,作为一个更通用的定义,香农熵可以用来计算通信信道的容量。研究人员的大部分工作都致力于计算容量或开发错误纠正代码以达到该容量

    香农于2001年2月24日去世,死于一种以医生阿洛伊修斯·阿尔茨海默命名的疾病。据他的妻子说,他过着平静的生活,但已经失去了记忆的能力

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写