assignmentutor-lab™ 为您的留学生涯保驾护航 在代写数字信号处理Digital Signal Processing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字信号处理Digital Signal Processing方面经验极为丰富，各种代写数字信号处理Digital Signal Processing相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电子工程代写|数字信号处理代写Digital Signal Processing代考|Impedance Matching at Five Frequencies

Let the transformation function be
$$S=\left(k_{0} / s\right)+\left[k_{1} s /\left(s^{2}+q_{1}\right)\right]+\left[k_{2} s /\left(s^{2}+q_{2}\right)\right]$$
By applying Eq. (3.23) to D1 or D2, the resulting circuit configuration can be easily drawn. For the constants, the equations to be solved are obtained as
\begin{aligned} k_{0}+k_{1}+k_{2}=\omega_{1} &-\omega_{2}+\omega_{3}-\omega_{4}+\omega_{5}=A, \text { say } \ q_{1}+q_{2}=\omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{1} \omega_{4}-\omega_{1} \omega_{5} &+\omega_{2} \omega_{3}-\omega_{2} \omega_{4}+\omega_{2} \omega_{5}+\omega_{3} \omega_{4}-\omega_{3} \omega_{5}+\omega_{4} \omega_{5}=B, \text { say } \ k_{1} q_{2}+k_{2} q_{1}+k_{0}\left(q_{1}+q_{2}\right)=& \omega_{1} \omega_{2} \omega_{3}-\omega_{1} \omega_{2} \omega_{4}+\omega_{1} \omega_{2} \omega_{5}+\omega_{1} \omega_{3} \omega_{4} \ &-\omega_{1} \omega_{3} \omega_{5}+\omega_{1} \omega_{4} \omega_{5}-\omega_{2} \omega_{3} \omega_{4}+\omega_{2} \omega_{3} \omega_{5} \ &-\omega_{2} \omega_{4} \omega_{5}+\omega_{3} \omega_{4} \omega_{5}=C, \text { say } \end{aligned}
$q_{1} q_{2}=\omega_{1} \omega_{2} \omega_{3} \omega_{4}+\omega_{1} \omega_{2} \omega_{4} \omega_{5}-\omega_{1} \omega_{2} \omega_{3} \omega_{5}-\omega_{1} \omega_{3} \omega_{4} \omega_{5}+\omega_{2} \omega_{3} \omega_{4} \omega_{5}=\mathrm{D}$, say
As in the case of the previous Section, $q_{1}$ and $q_{2}$ can be solved from Eqs. (3.25) and (3.27) by solving a quadratic equation, whose solutions are reciprocals of each other. Also, as in the previous case, interchanging $q_{1}$ and $q_{2}$ has the effect of interchanging the values of $k_{1}$ and $k_{2}$. Once $q_{1}$ and $q_{2}$ are determined, $k_{0}$ is found from Eq. (3.28), and $k_{1}$ and $k_{2}$ are found from Eqs. (3.24) and (3.26). The final results are as follows:
\begin{aligned} &q_{1}=(1 / 2)\left[B+\sqrt{B^{2}-4 D}\right], q_{2}=D / q_{1}, k_{0}=E / D \ &k_{1}=\left{[A-(F / D)] q_{1}-[C-(R F / D)]\right} /\left(q_{1}-q_{2}\right) \text { and } k_{2}=A-k_{0}-k_{1} \end{aligned}

## 电子工程代写|数字信号处理代写Digital Signal Processing代考|Summary of the Procedure

The steps in the design of networks for impedance matching at multiple frequencies can be summarized as follows:

Step 1. Design the basic network D1 or D2 or both for the given $R_{L}$ and $R_{S}$ with $\omega_{0}$ $=1 \mathrm{rad} / \mathrm{s}$.

Step 2. Choose the transformation function as follows. For $N=2$, choose either the first two terms only or a single term in the summation in Eq. (3.8). For odd $N \geq 3$, choose either of the first two terms in Eq. (3.8) and the summation with $i=1$ to $(N$ $-1) / 2$. For even $N \geq 4$, choose the first two terms in Eq. (3.8) and the summation with $i=1$ to $(N-2) / 2$; alternatively, use only the summation with $i=1$ to $(N / 2)$.
Step 3. Apply the transformation to D1 (or D2 or both) to obtain the circuit configuration (s) and element values in terms of $k_{i}^{\prime} s$ and $q_{i}^{\prime} s$.

Step 4. Put $S=j 1$ and $s=j \omega$ in the transformation function and simplify to get an $N$ th order algebraic equation in $\omega$.

Step 5. Identify the roots of the equation obtained above as $\omega_{1},-\omega_{2}, \omega_{3}, \ldots$ or $-\omega_{1}$, $\omega_{2},-\omega_{3}, \ldots$ depending on whether $S$ has a pole at the origin or not. Write the equation in terms of $\omega_{i}^{\prime} s$ and compare its coefficients with those of the equation obtained in Step $4 .$

Step 6. Find the $k_{i}^{\prime} s$ and $q_{i}^{\prime} s$ in terms of $\omega_{i}^{\prime} s$ from the results of Step 5, and substitute them in the circuit (s) obtained in Step $3 .$

Step 7. Find some alternative circuits from the results of Step 6 by synthesizing the series and shunt $L C$ impedances by Foster or Cauer techniques or a combination of them. Also, explore other possible transformations, if necessary, and finally, choose the best one according to a predefined criterion.

# 数字信号处理代考

## 电子工程代写|数字信号处理代写Digital Signal Processing代考|Impedance Matching at Five Frequencies

$$S=\left(k_{0} / s\right)+\left[k_{1} s /\left(s^{2}+q_{1}\right)\right]+\left[k_{2} s /\left(s^{2}+q_{2}\right)\right]$$

$$k_{0}+k_{1}+k_{2}=\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}+\omega_{5}=A \text {, say } q_{1}+q_{2}=\omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{1} \omega_{4}-\omega_{1} \omega_{5} \quad+\omega_{2} \omega_{3}-\omega_{2} \omega_{4}+\omega_{2} \omega_{5}+\omega_{3} \omega_{4}-\omega_{3} \omega_{5}+\omega_{4} \omega_{5}=B, \mathrm{~s}$$
$q_{1} q_{2}=\omega_{1} \omega_{2} \omega_{3} \omega_{4}+\omega_{1} \omega_{2} \omega_{4} \omega_{5}-\omega_{1} \omega_{2} \omega_{3} \omega_{5}-\omega_{1} \omega_{3} \omega_{4} \omega_{5}+\omega_{2} \omega_{3} \omega_{4} \omega_{5}=\mathrm{D}$ ，比如说

$\backslash$ left 的分隔符缺失或无法识别

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师