如果你也在 怎样代写计量经济学Econometrics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
计量经济学,对经济关系的统计和数学分析,通常作为经济预测的基础。这种信息有时被政府用来制定经济政策,也被私人企业用来帮助价格、库存和生产方面的决策。
assignmentutor-lab™ 为您的留学生涯保驾护航 在代写计量经济学Econometrics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计量经济学Econometrics代写方面经验极为丰富,各种代写计量经济学Econometrics相关的作业也就用不着说。
我们提供的计量经济学Econometrics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

经济代写|计量经济学代写Econometrics代考|Consistency of the NLS Estimator
A univariate “nonlinear regression model” has up to now been expressed in the form
$$
\boldsymbol{y}=\boldsymbol{x}(\boldsymbol{\beta})+\boldsymbol{u}, \quad \boldsymbol{u} \sim \operatorname{IID}\left(\mathbf{0}, \sigma^2 \mathbf{I}_n\right),
$$
where $\boldsymbol{y}, \boldsymbol{x}(\boldsymbol{\beta})$, and $\boldsymbol{u}$ are $n$-vectors for some sample size $n$. The model parameters are therefore $\boldsymbol{\beta}$ and either $\sigma$ or $\sigma^2$. The regression function $x_t(\boldsymbol{\beta})$, which is the $t^{\text {th }}$ element of $\boldsymbol{x}(\boldsymbol{\beta})$, will in general depend on a row vector of variables $\boldsymbol{Z}_t$. The specification of the vector of error terms $\boldsymbol{u}$ is not complete,since the distribution of the $u_t$ ‘s has not been specified. Thus, for a sample of size $n$, the model $\mathbb{M}$ described by (5.08) is the set of all DGPs generating samples $y$ of size $n$ such that the expectation of $y_t$ conditional on some information set $\Omega_t$ that includes $\boldsymbol{Z}_t$ is $x_t(\boldsymbol{\beta})$ for some parameter vector $\boldsymbol{\beta} \in \mathbb{R}^k$, and such that the differences $y_t-x_t(\boldsymbol{\beta})$ are independently distributed error terms with common variance $\sigma^2$, usually unknown.
It will be convenient to generalize this specification of the DGPs in M a little, in order to be able to treat dynamic models, that is, models in which there are lagged dependent variables. Therefore, we explicitly recognize the possibility that the regression function $x_t(\boldsymbol{\beta})$ may include among its (until now implicit) dependences an arbitrary but bounded number of lags of the dependent variable itself. Thus $x_t$ may depend on $y_{t-1}, y_{t-2}, \ldots, y_{t-l}$, where $l$ is a fixed positive integer that does not depend on the sample size. When the model uses time-series data, we will therefore take $x_t(\boldsymbol{\beta})$ to mean the expectation of $y_t$ conditional on an information set that includes the entire past of the dependent variable, which we can denote by $\left{y_s\right}_{s=1}^{t-1}$, and also the entire history of the exogenous variables up to and including the period $t$, that is, $\left{\boldsymbol{Z}s\right}{s=1}^t$. The requirements on the disturbance vector $\boldsymbol{u}$ are unchanged.
For asymptotic theory to be applicable, we must next provide a rule for extending (5.08) to samples of arbitrarily large size. For models which are not dynamic (including models estimated with cross-section data, of course), so that there are no time trends or lagged dependent variables in the regression functions $x_t$, there is nothing to prevent the simple use of the fixed-inrepeated-samples notion that we discussed in Section 4.4. Specifically, we consider only sample sizes that are integer multiples of the actual sample size $m$ and then assume that $x_{N m+t}(\boldsymbol{\beta})=x_t(\boldsymbol{\beta})$ for $N>1$. This assumption makes the asymptotics of nondynamic models very simple compared with those for dynamic models. ${ }^3$
经济代写|计量经济学代写Econometrics代考|Asymptotic Normality of the NLS Estimator
In this section, we discuss the asymptotic normality of the nonlinear least squares estimator. For this, we will require a bit more regularity than was needed for consistency, as we will see. First, a formal definition of asymptotic normality:
Definition 5.4.
A consistent estimator $\hat{\boldsymbol{\beta}} \equiv\left{\hat{\boldsymbol{\beta}}^n\right}$ of the parameters of the asymptotically identified parametrized model (M, $\boldsymbol{\beta}$ ) is asymptotically normal if for every DGP $\mu_0 \in \mathbb{M}$, the sequence of random variables $\left{n^{1 / 2}\left(\hat{\boldsymbol{\beta}}^n-\boldsymbol{\beta}_0\right)\right}$ tends in distribution to a (multivariate) normal distribution, with mean zero and finite covariance matrix.
The crucial difference between the property of asymptotic normality and that of consistency discussed in the preceding section is the factor of $n^{1 / 2}$. This factor “blows up” $\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0$, which, if $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}_0$, tends to zero as $n$ tends to infinity. Thus the product $n^{1 / 2}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0\right)$ tends to a vector of nonzero random variables. Asymptotic normality, when it holds, will of course imply consistency, since if $n^{1 / 2}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0\right)$ is $O(1)$, it follows that $\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0$ must be $O\left(n^{-1 / 2}\right)$. If the estimator $\hat{\boldsymbol{\beta}}$ satisfies the latter property, it is said to be root$\boldsymbol{n}$ consistent, meaning that the difference between the estimator and the true value is proportional to one over $\sqrt{n}$. An estimator that is root- $n$ consistent must also be weakly consistent, since plim $\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0\right)=\mathbf{0}$. Not all consistent estimators are root- $n$ consistent, however.
As in the last section, we will first state a theorem which gives conditions sufficient for the asymptotic normality of the NLS estimator and then discuss the circumstances in which we may hope that the conditions are satisfied. First, some notation. As usual we let $\boldsymbol{X}t(\boldsymbol{\beta}) \equiv D\beta x_t(\boldsymbol{\beta})$ denote the row vector of partial derivatives of the regression function $x_t(\boldsymbol{\beta})$; then $\boldsymbol{A}t(\boldsymbol{\beta}) \equiv D{\beta \beta} x_t(\boldsymbol{\beta})$ will denote the Hessian of $x_t(\boldsymbol{\beta})$, and $\boldsymbol{H}t\left(y_t, \boldsymbol{\beta}\right) \equiv D{\beta \beta}\left(y_t-x_t(\boldsymbol{\beta})\right)^2$ will denote the Hessian of the contribution to the sum-of-squares function from observation $t$. This last is readily seen to be
$$
\boldsymbol{H}_t\left(y_t, \boldsymbol{\beta}\right)=2\left(\boldsymbol{X}_t^{\top}(\boldsymbol{\beta}) \boldsymbol{X}_t(\boldsymbol{\beta})-\boldsymbol{A}_t(\boldsymbol{\beta})\left(y_t-x_t(\boldsymbol{\beta})\right)\right) .
$$
Evidently, the Hessian $\boldsymbol{A}_t$ of the regression function will be a zero matrix if the regression function $x_t$ is linear, and $\boldsymbol{X}_t(\boldsymbol{\beta})$ will just be $\boldsymbol{X}_t$. In that case, $\boldsymbol{H}_t\left(y_t, \boldsymbol{\beta}\right)$ will simplify to $2\left(\boldsymbol{X}_t^{\top} \boldsymbol{X}_t\right)$, which is necessarily positive semidefinite.

计量经济学代考
经济代写|计量经济学代写Econometrics代考|Consistency of the NLS Estimator
到目前为止,单变量“非线性回归模型”以以下形式表示
$$
\boldsymbol{y}=\boldsymbol{x}(\boldsymbol{\beta})+\boldsymbol{u}, \quad \boldsymbol{u} \sim \operatorname{IID}\left(\mathbf{0}, \sigma^2 \mathbf{I}n\right), $$ 在哪里 $\boldsymbol{y}, \boldsymbol{x}(\boldsymbol{\beta})$ ,和 $\boldsymbol{u}$ 是 $n$ – 一些样本大小的向量 $n$. 因此模型参数为 $\boldsymbol{\beta}$ 并且要么 $\sigma$ 或者 $\sigma^2$. 回归函数 $x_t(\boldsymbol{\beta})$ ,哪一个是 $t^{\text {th }}$ 的元素 $\boldsymbol{x}(\boldsymbol{\beta})$ ,通常取决于变量 的行向量 $\boldsymbol{Z}_t$. 误差项向量的规范 $\boldsymbol{u}$ 不完整,由于分布 $u_t$ ‘s 尚末指定。因此,对于一个大小的样本 $n$ ,该模型 M (5.08) 描述的是所有 DGP 生成样本的 集合 $y$ 大小的 $n$ 这样的期望 $y_t$ 以某些信息集为条件 $\Omega_t$ 那包含着 $\boldsymbol{Z}_t$ 是 $x_t(\boldsymbol{\beta})$ 对于一些参数向量 $\boldsymbol{\beta} \in \mathbb{R}^k$ ,并且使得差异 $y_t-x_t(\boldsymbol{\beta})$ 是具有共同方差的独 立分布的误差项 $\sigma^2$ ,通常是末知的。 为了能够处理动态模型,即存在滞后因变量的模型,可以方便地对 M 中的 DGP 的这种规范进行一些概括。因此,我们明确地认识到回归函数的可 能性 $x_t\left(\boldsymbol{\beta}\right.$ )可以在其(直到现在是隐式的)依赖项中包括因变量本身的任意但有限数量的滞后。因此 $x_t$ 可能取决于 $y{t-1}, y_{t-2}, \ldots, y_{t-l} ,$ 在哪里 $l$ 是 一个不依赖于样本大小的固定正整数。当模型使用时间序列数据时,我们将因此取 $x_t(\boldsymbol{\beta})$ 表示期望 $y_t$ 以包含因变量整个过去的信息集为条件,我们可 以表示为 $\backslash$ left 的分隔符蚗失或无法识别
,以及直到并包括该时期的外生变量的整个历史 $t$ ,即 $\$ \backslash$ left{boldsymbol{Z} s|right}
经济代写|计量经济学代写Econometrics代考|Asymptotic Normality of the NLS Estimator
在本节中,我们讨论非线性最小二乘估计量的渐近正态性。为此,我们将需要比一致性所需的更多的规律性,正如我们将看到的那样。首先,渐近 正态性的正式定义:
定义 5.4。
一致的估计器 $\backslash$ left 的分隔符蝧失或无法识别 $\quad$ 渐近识别的参数化模型的参数 $(M , \beta)$ 是渐近正态的,如果对于每个 DGP $\mu_0 \in \mathbb{M}$, 随机变量序列 \left 的分隔符蝧失或无法识别 $\quad$ 倾向于分布到(多元)正态分布,均值为零和有限协方差矩阵。
崭近正态性和上节讨论的一致性性质之间的关键区别在于: $n^{1 / 2}$. 这个因素“炸了” $\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0$, 其中,如果 $\hat{\boldsymbol{\beta}}$ 是一致的 $\boldsymbol{\beta}_0$, 趋于零 $n$ 趋于无穷大。因此产品 $n^{1 / 2}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0\right)$ 趋向于非零随机变量的向量。渐近正态性,当它成立时,当然意味着一致性,因为如果 $n^{1 / 2}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0\right)$ 是 $O(1)$ ,它遵循 $\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0$ 一
定是 $O\left(n^{-1 / 2}\right)$. 如果估计者 $\hat{\beta}$ 满足后一个性质,就说是root $n$ 一致,这意味着估计量和真实值之间的差异与 1 成正比 $\sqrt{n}$. 一个估计量是根- $n$ 一致的 也必须是弱一致的,因为 $\operatorname{plim}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0\right)=\mathbf{0}$. 并非所有一致的估计器都是根- $n$ 然而,一致。
与上一节一样,我们将首先陈述一个为 NLS 估计量的渐近正态性提供充分条件的定理,然后讨论我们可能希望满足这些条件的情况。首先,一些符 号。像往常一样,我们让 $\boldsymbol{X} t(\boldsymbol{\beta}) \equiv D \beta x_t(\boldsymbol{\beta})$ 表示回归函数的偏导数的行向量 $x_t(\boldsymbol{\beta})$; 然后 $\boldsymbol{A} t(\boldsymbol{\beta}) \equiv D \beta \beta x_t(\boldsymbol{\beta})$ 将表示 $\operatorname{Hessian~}$ 的 $x_t(\boldsymbol{\beta})$ ,和 $\boldsymbol{H} t\left(y_t, \boldsymbol{\beta}\right) \equiv D \beta \beta\left(y_t-x_t(\boldsymbol{\beta})\right)^2$ 将表示观察对平方和函数的贡献的 Hessiant. 最后一个很容易看出是
$$
\boldsymbol{H}_t\left(y_t, \boldsymbol{\beta}\right)=2\left(\boldsymbol{X}_t^{\top}(\boldsymbol{\beta}) \boldsymbol{X}_t(\boldsymbol{\beta})-\boldsymbol{A}_t(\boldsymbol{\beta})\left(y_t-x_t(\boldsymbol{\beta})\right)\right) .
$$
显然,黑森 $\boldsymbol{A}_t$ 的回归函数将是一个零矩阵,如果回归函数 $x_t$ 是线性的,并且 $\boldsymbol{X}_t(\boldsymbol{\beta})$ 将只是 $\boldsymbol{X}_t$. 在这种情况下, $\boldsymbol{H}_t\left(y_t, \boldsymbol{\beta}\right)$ 将简化为 $2\left(\boldsymbol{X}_t^{\top} \boldsymbol{X}_t\right)$ ,这 必然是半正定的。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
R语言代写 | 问卷设计与分析代写 |
PYTHON代写 | 回归分析与线性模型代写 |
MATLAB代写 | 方差分析与试验设计代写 |
STATA代写 | 机器学习/统计学习代写 |
SPSS代写 | 计量经济学代写 |
EVIEWS代写 | 时间序列分析代写 |
EXCEL代写 | 深度学习代写 |
SQL代写 | 各种数据建模与可视化代写 |