assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写电磁学electromagnetism方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电磁学electromagnetism代写方面经验极为丰富，各种代写电磁学electromagnetism相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|电磁学代写electromagnetism代考|Tangential Trace Revisited

Below, the tangential trace of elements of $\boldsymbol{H}(\mathbf{c u r l}, \Omega)$ is scrutinized, and refined generalized integration by parts à la (2.27) is established, involving two vector fields of $\boldsymbol{H}$ (curl, $\Omega$ ). Indeed, in the case of the tangential trace, the mapping $\gamma \tau$ from $\boldsymbol{H}($ curl, $\Omega)$ to $\boldsymbol{H}^{-1 / 2}(\Gamma)$ is not surjective. This seems obvious, since one has $(\gamma \top \boldsymbol{f}) \cdot \boldsymbol{n}=0$ in some sense, for instance, as soon as a pointwise $\gamma \top \boldsymbol{f}$ exists. But there are also more profound arguments, which allow us to prove that, even when one considers only the set of vector fields on $\Gamma$ that are orthogonal to $\boldsymbol{n}$, the mapping is nevertheless not surjective $[5,65,66,72]$.

In order to prove this, together with a number of useful results, let us consider, for simplicity, the case of a polyhedral domain, still called $\Omega$, with the notations of Definition 2.1.54. We follow here the path chosen by A. Buffa and the second author in [65, 66], where the case of a curved polyhedron is also addressed. Again for simplicity, we assume that its boundary $\Gamma$ is topologically trivial (the notion is defined in Sect. 3.2). See [64] for a topologically non-trivial boundary: in this case, decompositions of function spaces have to be modified, with the addition of a third-finite-dimensional-vector subspace. Along the way, representative proofs, establishing the continuity of the mappings, are provided. On the other hand, the results relating the surjectivity of the mappings are stated without proof. In the more general case of a domain, the reader is referred to $[68,188]$.

Looking at the integration-by-parts formula (2.27), it is clear that the normal component of $g$ does not play any role in the formula. Therefore, one can concentrate on the tangential components only.

Definition 3.1.1 Let $f$ be a smooth vector function defined on $\bar{\Omega}$. Its tangential components trace $\boldsymbol{n} \times(\boldsymbol{f} \times \boldsymbol{n}){\left.\right|{\Gamma}}$ on the houndary $\Gamma$ is denoted hy $\pi_{\top} \boldsymbol{f}$, and $\pi_{\top}$ is called the tangential components trace mapping.

In order to define the actual range of $\pi_{\top}$, starting from $\boldsymbol{H}^1(\Omega)$, let us introduce some spaces of vector fields, defined on $\Gamma$.

## 物理代写|电磁学代写electromagnetism代考|Scalar and Vector Potentials: The Analyst’s and Topologist’s Points of View

We discuss two different mathematical points of view, namely the analyst’s and topologist’s, concerning the existence of potentials for curl-free fields. We then reconcile these two points of view and define a general framework.
For the analyst [124], the main issue is the regularity of the boundary. Accordingly, the analyst’s hypothesis on $\Omega$ is:
(Ana) ” $\Omega$ is an open set of $\mathbb{R}^3$ with a Lipschitz boundary”.
For the topologist $[126,127]$, the main issue is (co)homology and, of particular interest for our purpose, the existence of single-valued potentials to curl-free smooth fields. In other words, given a vector field $v$ defined on $\Omega$ such that $\operatorname{curl} v=0$ in $\Omega$, does there exist a continuous single-valued function $p$ such that $\boldsymbol{v}=\operatorname{grad} p$ ? The answer to this question can be found in (co)homology theory, which results in the topologist’s dual hypothesis:
either (Top) $){I=0} \quad$ “given any vector field $v \in \boldsymbol{C}^1(\Omega)$ such that curl $v=0$ in $\Omega$, there exists $p \in C^0(\Omega)$ such that $v=\operatorname{grad} p$ on $\Omega^{\prime \prime}$; or $\quad(\text { Top }){I>0} \quad$ “there exist I non-intersecting manifolds, $\Sigma_1, \ldots, \Sigma_I$, with boundaries $\partial \Sigma_i \subset \Gamma$ such that, if we let $\dot{\Omega}=\Omega \backslash \bigcup_{i=1}^l \Sigma_i$, given any vector field $v \in C^1(\Omega)$ such that curl $v=0$ in $\Omega$, there exists $\dot{p} \in C^0(\dot{\Omega})$ such that $v=\operatorname{grad} \dot{p}$ on $\Omega^{\prime \prime}$.
Here, $I$ is equal to the minimal number of required cuts $\left(\Sigma_i\right)_i$. Mathematically, $I$ is equal to $\beta_1(\Omega)$, the first Betti number. Note that according to the above, $I=0$ is an admissible value, in which case the existence of continuous single-valued potentials is guaranteed on $\Omega$, whereas $I>0$ corresponds to the case when cuts must be introduced. This is the reason why we use the notations $(\mathbf{T o p}){I=0}$ and (Top) $I>0$ to discriminate the two cases. When $I=0$, the set $\Omega$ is said to be topologically trivial. Remark 3.2.1 Recall that, according to homotopy theory, a connected set is simply connected if every closed curve can be contracted to a point via continuous transformations. It is often assumed that each connected component of $\Omega$ must be simply connected to guarantee the existence of the continuous single-valued potential: in other words, one usually states in (Top) $){I=0}$ (respectively $(\text { Top })_{I>0}$ ) that $\Omega$ (respectively $\dot{\Omega}$ ) is simply connected. However, this property is only a sufficient condition and, from a topologist’s point of view [126], the correct assumption is of a (co)homological nature, cf. (Top) as stated above.

# 电磁学代考

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师