assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写电磁学electromagnetism方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电磁学electromagnetism代写方面经验极为丰富，各种代写电磁学electromagnetism相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|电磁学代写electromagnetism代考|Coupled Approximate Models

When considering the Vlasov-Maxwell model, in many cases, the interactions between particles are mainly electrostatic; the self-consistent magnetic field is negligible. Furthermore, particles have velocities that are much smaller than $c$ : they obey the non-relativistic dynamic. So, one reverts to the position-velocity description of phase space $(x, v) \in \mathbb{R}_x^3 \times \mathbb{R}_v^3$; in addition, in the Lorentz force, the term $v \times \boldsymbol{B}$ is negligible before $\boldsymbol{E}$, unless there is a strong external magnetic field (as in tokamaks, for instance). One replaces the Maxwell’s equations with an electric quasi-static model; and the magnetic part $(1.114)-(1.115)$ is irrelevant. The electric part (1.112)-(1.113) is rephrased as $\boldsymbol{E}=-\operatorname{grad} \phi$ and $-\Delta \phi=\varrho / \varepsilon_0$. Thus, we arrive at the Vlasov-Poisson system:
\begin{aligned} \frac{\partial f}{\partial t}+v \cdot \nabla_x f-\frac{q}{m} \nabla_x \phi \cdot \nabla_v f &=0 \ -\Delta_x \phi &=\frac{\varrho}{\varepsilon_0}, \end{aligned}
with $\varrho$ given by (1.82). Also, there exist intermediate models such as VlasovDarwin, which couples Eq. (1.87) with the model of Sect. 1.4.4 (see, for instance, $[7,36])$

## 物理代写|电磁学代写electromagnetism代考|Standard Differential Operators

Let us begin by recalling the definitions of the four operators grad, div, $\Delta$ and curl, which we use throughout this book.

Let $E_n$ be a finite-dimensional Euclidean space of dimension $n$, endowed with the scalar product :, and let $A_n$ be an affine space over $E_n$. Furthermore, let $U$ be an open subset of $A_n$. Respectively introduce a scalar field on $U, f: U \rightarrow \mathbb{R}$, and a vector field on $U, \boldsymbol{f}: U \rightarrow E_n$.

Assume that $f$ is differentiable at $M \in U$, and let $D f(M)$ be its differential at $M$. Then, the gradient of $f$ at $M$ is defined by
$$\operatorname{grad} f(M) \cdot v:=D f(M) \bullet v, \quad \forall v \in E_n .$$
Provided that $f$ is differentiable on $U$, the vector field $M \mapsto \operatorname{grad} f(M)$ is called the gradient of $f$ on $U$. The operator, grad, is called the gradient operator.

Assume that $\boldsymbol{f}$ is differentiable at $M \in U$, then the divergence of $f$ at $M$ is defined by
$$\operatorname{div} f(M):=\operatorname{tr}(D f(M)),$$
where tr denotes the trace of a linear operator. Provided that $f$ is differentiable on $U$, the scalar field $M \mapsto \operatorname{div} \boldsymbol{f}(M)$ is called the divergence of $f$ on $U$. The operator, div, is called the divergence operator.

Assume that $f$ is twice differentiable at $M \in U$, then the Laplacian of $f$ at $M$ is defined by
$$\Delta f(M):=\operatorname{div}(\operatorname{grad} f)(M) .$$
Provided that $f$ is twice differentiable on $U$, the scalar field $M \mapsto \Delta f(M)$ is called the Laplacian of $f$ on $U$. The operator, $\Delta$, is called the Laplace operator.

Consider that $n=3$, and assume that $f$ is differentiable at $M \in U$. Then, for any given $v_0 \in E_3$, the mapping $f \times v_0: U \rightarrow E_3$ is differentiable at $M$. The curl of $f$ at $M$ is defined by
$$\operatorname{curl} f(M) \cdot v_0:=\operatorname{div}\left(f \times v_0\right)(M), \quad \forall v_0 \in E_3 .$$

# 电磁学代考

## 物理代写|电磁学代写电磁学代考|耦合近似模型

.

\begin{aligned} \frac{\partial f}{\partial t}+v \cdot \nabla_x f-\frac{q}{m} \nabla_x \phi \cdot \nabla_v f &=0 \ -\Delta_x \phi &=\frac{\varrho}{\varepsilon_0}, \end{aligned}
， $\varrho$由(1.82)给出。此外，也存在一些中间模型，如VlasovDarwin，它将Eq.(1.87)与第1.4.4节的模型耦合起来(例如，参见$[7,36])$ )

## 物理代写|电磁学代写电磁代考|标准差分算符

.

$$\operatorname{grad} f(M) \cdot v:=D f(M) \bullet v, \quad \forall v \in E_n .$$

$$\operatorname{div} f(M):=\operatorname{tr}(D f(M)),$$

$$\Delta f(M):=\operatorname{div}(\operatorname{grad} f)(M) .$$

$$\operatorname{curl} f(M) \cdot v_0:=\operatorname{div}\left(f \times v_0\right)(M), \quad \forall v_0 \in E_3 .$$ 定义

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师