assignmentutor-lab™ 为您的留学生涯保驾护航 在代写广义线性模型generalized linear model方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写广义线性模型generalized linear model代写方面经验极为丰富，各种代写广义线性模型generalized linear model相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|广义线性模型代写generalized linear model代考|Distributions of Quadratic Forms

Thus far we have concentrated on central chi-square random variables (i.e., $\lambda=0$ ). However, in general, if the $n \times 1$ random vector $\mathbf{Y} \sim \mathbf{N}_n\left(\mu, \mathbf{I}_n\right)$ then $\mathbf{Y}^{\prime} \mathbf{A Y} \sim \chi_p^2(\lambda)$ where $\mu$ is any $n \times 1$ mean vector and the noncentrality parameter is given by $\lambda=\mu^{\prime} \mathbf{A} \boldsymbol{\mu} / 2$.

The next theorem considers the distribution of $\mathbf{Y}^{\prime} \mathbf{A Y}$ when $\mathbf{Y} \sim \mathbf{N}_n(\boldsymbol{\mu}, \mathbf{\Sigma})$ and $\boldsymbol{\Sigma}$ is a positive definite matrix of rank $n$.

Theorem 3.1.2 Let the $n \times 1$ random vector $\mathbf{Y} \sim \mathbf{N}_n(\mu, \mathbf{\Sigma})$ where $\boldsymbol{\Sigma}$ is an $n \times n$ positive definite matrix of rank $n$. Then $\mathbf{Y}^{\prime} \mathbf{A Y} \sim \chi_p^2\left(\lambda=\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu} / 2\right)$ if and only if any of the following conditions are satisfied: (1) $\mathbf{A} \mathbf{\Sigma}$ (or $\mathbf{\Sigma} \mathbf{A}$ ) is an idempotent matrix of rank $p$ or $(2) \mathbf{A} \mathbf{\Sigma} \mathbf{A}=\mathbf{A}$ and $\mathbf{A}$ has rank $p$.

Proof: Let $\mathbf{Z}=\mathbf{T}^{-1}(\mathbf{Y}-\boldsymbol{\mu})$ where $\boldsymbol{\Sigma}=\mathbf{T T}^{\prime}$. By Theorem $2.1 .2$ with $n \times n$ matrix $\mathbf{B}=\mathbf{T}^{-1}$ and $n \times 1$ vector $\mathbf{b}=-\mathbf{T}^{-1} \mu, \mathbf{Z} \sim \mathbf{N}_n\left(\mathbf{0}, \mathbf{I}_n\right)$. Furthermore, $\mathbf{Y}^{\prime} \mathbf{A Y}=(\mathbf{T Z}+\mu)^{\prime} \mathbf{A}(\mathbf{T Z}+\mu)=\left(\mathbf{Z}+\mathbf{T}^{-1} \boldsymbol{\mu}\right)^{\prime} \mathbf{T}^{\prime} \mathbf{A T}\left(\mathbf{Z}+\mathbf{T}^{-1} \boldsymbol{\mu}\right)=\mathbf{V}^{\prime} \mathbf{R V}$ where $\mathbf{V}=\mathbf{Z}+\mathbf{T}^{-1} \mu$ and $\mathbf{R}=\mathbf{T}^{\prime} \mathbf{A T}$. By Theorem $2.1 .2$ with $n \times n$ matrix $\mathbf{B}=\mathbf{I}_n$ and $n \times 1$ vector $\mathbf{b}=\mathbf{T}^{-1} \mu, \mathbf{V} \sim \mathbf{N}_n\left(\mathbf{T}^{-1} \mu, \mathbf{I}_n\right)$. By Theorem 3.1.1, $\mathbf{V}^{\prime} \mathbf{R V} \sim \chi_p^2(\lambda)$ if and only if $\mathbf{R}$ is idempotent of rank $p$. But $\mathbf{R}$ is idempotent if and only if $\left(\mathbf{T}^{\prime} \mathbf{A T}\right)\left(\mathbf{T}^{\prime} \mathbf{A T}\right)=\mathbf{T}^{\prime} \mathbf{A T}$ or equivalently $\mathbf{A} \mathbf{\Sigma}=\mathbf{A} \mathbf{\Sigma A} \mathbf{\Sigma}$. Therefore, $\mathbf{Y}^{\prime} \mathbf{A Y} \sim \chi_p^2(\lambda)$ if and only if $\mathbf{A} \mathbf{\Sigma}$ is idempotent. Finally, $p=$ $\operatorname{rank}(\mathbf{R})=\operatorname{rank}\left(\mathbf{T}^{\prime} \mathbf{A T}\right)=\operatorname{rank}\left(\mathbf{A T T ^ { \prime }}\right)=\operatorname{rank}(\mathbf{A} \boldsymbol{\Sigma})$ since $\mathbf{T}$ is nonsingular. Also, $\lambda=\left(\mathbf{T}^{-1} \boldsymbol{\mu}\right)^{\prime} \mathbf{R}\left(\mathbf{T}^{-1} \boldsymbol{\mu}\right) / 2=\boldsymbol{\mu}^{\prime} \mathbf{T}^{-1} \mathbf{T}^{\prime} \mathbf{A T T} \mathbf{T}^{-1} \boldsymbol{\mu}=\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu} / 2$. The proofs for $\boldsymbol{\Sigma} \mathbf{A}$ idempotent of rank $p$ or $\mathbf{A} \mathbf{\Sigma} \mathbf{A}=\mathbf{A}$ of rank $p$ are left to the reader.

It is convenient to make an observation at this point. In most applications it is more natural to show that $\mathbf{A} \boldsymbol{\Sigma}$ is a multiple of an idempotent matrix. We therefore state the following two corollaries which are direct consequences of Theorem 3.1.2.

## 统计代写|广义线性模型代写generalized linear model代考|INDEPENDENCE

The independence of two quadratic forms is examined in the next theorem.
Theorem 3.2.1 Let $\mathbf{A}$ and $\mathbf{B}$ be $n \times n$ constant matrices. Let the $n \times 1$ random vector $\mathbf{Y} \sim \mathrm{N}_n(\mu, \Sigma)$. The quadratic forms $\mathbf{Y}^{\prime} \mathbf{A Y}$ and $\mathbf{Y}^{\prime} \mathbf{B Y}$ are independent if and only if $\mathbf{A} \Sigma \mathbf{B}=\mathbf{0}$ (or $\mathbf{B} \Sigma \mathbf{A}=\mathbf{0})$.

Proof: The matrices $\mathbf{A}, \boldsymbol{\Sigma}$, and $\mathbf{B}$ are symmetric. Therefore, $\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}=\mathbf{0}$ is equivalent to $\mathbf{B} \Sigma \mathbf{A}=\mathbf{0}$. Assume $\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}=\mathbf{0}$.

Theorem 1.1.5, there exists an $n \times n$ nonsingular matrix $\mathbf{S}$ such that $\mathbf{S} \boldsymbol{\Sigma} \mathbf{S}^{\prime}=\mathbf{I}n$. Then $\mathbf{Z}=\mathbf{S Y} \sim \mathbf{N}_n\left(\mathbf{S} \mu, \mathbf{I}_n\right)$. Let $\mathbf{G}=\left(\mathbf{S}^{-1}\right)^{\prime} \mathbf{A S}^{-1}$ and $\mathbf{H}=\left(\mathbf{S}^{-1}\right)^{\prime} \mathbf{B S}^{-1}$. Therefore, $\mathbf{Y}^{\prime} \mathbf{A Y}=\mathbf{Z}^{\prime} \mathbf{G Z}, \mathbf{Y}^{\prime} \mathbf{B Y}=\mathbf{Z}^{\prime} \mathbf{H Z}$, and $\mathbf{A} \mathbf{\Sigma B}=\mathbf{S}^{\prime} \mathbf{G S} \mathbf{S S}^{\prime} \mathbf{H S}=\mathbf{S}^{\prime} \mathbf{G H S}$. Thus, the statement $\mathbf{A} \mathbf{\Sigma B}=\mathbf{0}$ implies $\mathbf{Y}^{\prime} \mathbf{A Y}$ and $\mathbf{Y}^{\prime} \mathbf{B} \mathbf{Y}$ are independent and the statement $\mathbf{G H}=\mathbf{0}$, implies $\mathbf{Z}^{\prime} \mathbf{G Z}$ and $\mathbf{Z}^{\prime} \mathbf{H Z}$ are independent, are equivalent. Since $\mathbf{G}$ is symmetric, there exists an orthogonal matrix $\mathbf{P}$ such that $\mathbf{G}=\mathbf{P}^{\prime} \mathbf{D P}$, where $a=\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\mathbf{G})$ and $\mathbf{D}$ is a diagonal matrix with $a$ nonzero diagonal elements. Without loss of generality, assume that $$\mathbf{D}=\left[\begin{array}{cc} \mathbf{D}_a & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}\right]$$ where $\mathbf{D}_a$ is the $a \times a$ diagonal matrix containing the nonzero elements of $\mathbf{D}$. Let $\mathbf{X}=\mathbf{P Z} \sim \mathbf{N}_n\left(\mathbf{P S} \boldsymbol{\mu}, \mathbf{I}_n\right)$ and partition $\mathbf{X}$ as $\left[\mathbf{X}_1^{\prime}, \mathbf{X}_2^{\prime}\right]^{\prime}$, where $\mathbf{X}_1$ is $a \times 1$. Note that $\mathbf{X}_1$ and $\mathbf{X}_2$ are independent. Then $\mathbf{Z}^{\prime} \mathbf{G Z}=\mathbf{Z}^{\prime} \mathbf{P}^{\prime} \mathbf{D P Z}=\mathbf{X}^{\prime} \mathbf{D X}=\mathbf{X}_1^{\prime} \mathbf{D}_a \mathbf{X}_1$ and $\mathbf{Z}^{\prime} \mathbf{H Z}=\mathbf{X}^{\prime} \mathbf{P H P} \mathbf{X}^{\prime} \mathbf{X}=\mathbf{X}^{\prime} \mathbf{C X}$ where the symmetric matrix $\mathbf{C}=\mathbf{P H P}^{\prime}$. If $\mathbf{G H}=\mathbf{0}$ then $\mathbf{P}^{\prime} \mathbf{D P P} \mathbf{C P}^{\prime}=\mathbf{0}$, which implies $\mathbf{D C}=\mathbf{0}$. Partitioning $\mathbf{C}$ to conform with $\mathbf{D}$, $$\mathbf{0}=\mathbf{D C}=\left[\begin{array}{cc} \mathbf{D}_a & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}\right]\left[\begin{array}{ll} \mathbf{C}{11} & \mathbf{C}{12} \ \mathbf{C}{12}^{\prime} & \mathbf{C}{22} \end{array}\right]=\left[\begin{array}{cc} \mathbf{D}_a \mathbf{C}{11} & \mathbf{D}a \mathbf{C}{12} \ \mathbf{0} & \mathbf{0} \end{array}\right],$$
which implies $\mathbf{C}{11}=\mathbf{0}$ and $\mathbf{C}{12}=\mathbf{0}$. Therefore,
$$\mathbf{C}=\left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{C}{22} \end{array}\right],$$ which implies $\mathbf{X}^{\prime} \mathbf{C X}=\mathbf{X}_2^{\prime} \mathbf{C}{22} \mathbf{X}_2$, which is independent of $\mathbf{X}_1^{\prime} \mathbf{D}_a \mathbf{X}_1$. Therefore, $\mathbf{Z}^{\prime} \mathbf{G Z}$ and $\mathbf{Z}^{\prime} \mathbf{H Z}$ are independent. The proof of the converse statement is supplied by Searle (1971).

# 广义线性模型代考

## 统计代写|广义线性模型代写generalized linear model代考|二次型的分布

$\mathbf{Y}^{\prime} \mathbf{A Y}=(\mathbf{T Z}+\mu)^{\prime} \mathbf{A}(\mathbf{T Z}+\mu)=\left(\mathbf{Z}+\mathbf{T}^{-1} \boldsymbol{\mu}\right)^{\prime} \mathbf{T}^{\prime} \mathbf{A T}\left(\mathbf{Z}+\mathbf{T}^{-1} \boldsymbol{\mu}\right)=\mathbf{V}^{\prime} \mathbf{R} \mathbf{V}$ 在哪里 $\mathbf{V}=\mathbf{Z}+\mathbf{T}^{-1} \mu$ 和 $\mathbf{R}=\mathbf{T}^{\prime} \mathbf{A T}$. 按定理 $2.1 .2$ 和 $n \times n$ 矩阵 $\mathbf{B}=\mathbf{I}_n$ 和 $n \times 1$ 向量 $\mathbf{b}=\mathbf{T}^{-1} \mu, \mathbf{V} \sim \mathbf{N}_n\left(\mathbf{T}^{-1} \mu, \mathbf{I}_n\right)$. 根据定理 3.1.1， $\mathbf{V}^{\prime} \mathbf{R} \mathbf{V} \sim \chi_p^2(\lambda)$ 当且仅当 $\mathbf{R}$ 是秩幂等的 $p$. 但 $\mathbf{R}$ 是幂等的当且仅当 $\left(\mathbf{T}^{\prime} \mathbf{A T}\right)\left(\mathbf{T}^{\prime} \mathbf{A T}\right)=\mathbf{T}^{\prime} \mathbf{A T}$ 或等 效地 $\mathbf{A} \boldsymbol{\Sigma}=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\Sigma}$. 所以， $\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y} \sim \chi_p^2(\lambda)$ 当且仅当 $\mathbf{A} \boldsymbol{\Sigma}$ 是幂等的。最后， $p=\operatorname{rank}(\mathbf{R})=\operatorname{rank}\left(\mathbf{T}^{\prime} \mathbf{A T}\right)=\operatorname{rank}\left(\mathbf{A T T} \mathbf{T}^{\prime}\right)=\operatorname{rank}(\mathbf{A} \boldsymbol{\Sigma})$ 自从 $\mathbf{T}$ 是非奇异 的。还， $\lambda=\left(\mathbf{T}^{-1} \boldsymbol{\mu}\right)^{\prime} \mathbf{R}\left(\mathbf{T}^{-1} \boldsymbol{\mu}\right) / 2=\boldsymbol{\mu}^{\prime} \mathbf{T}^{-1} \mathbf{T}^{\prime} \mathbf{A T T T}{ }^{-1} \boldsymbol{\mu}=\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu} / 2$. 的证明 $\boldsymbol{\Sigma} \mathbf{A}$ 等级幕等 $p$ 或者 $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}=\mathbf{A}$ 等级 $p$ 留给读者。

## 统计代写|广义线性模型代写generalized linear model代考|独立性

$$\mathbf{C}=\left[\begin{array}{llll} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{C} 22 \end{array}\right],$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师