assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在假设检验hypothesis testing作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在假设检验hypothesis testing代写方面经验极为丰富，各种假设检验hypothesis testing相关的作业也就用不着 说。

• 时间序列分析Time-Series Analysis
• 马尔科夫过程 Markov process
• 随机最优控制stochastic optimal control
• 粒子滤波 Particle Filter
• 采样理论 sampling theory

## 统计代写|假设检验代写hypothesis testing代考|Finding the area under the normal curve

The area under the standard normal curve can be computed using the standard score. The Z score provides information on the position of a value compared to the average value using the distance to express the position by how many standard deviations the value falls above or below the average. The steps for finding the area under the standard normal curve require describing the standard normal table and then follow a few steps to extract the area from the table.

We use Table A in the Appendix to extract the area under the curve for $\mathrm{Z}$ values from 0 to 3 . The value of $Z$ should be divided into two parts, the first part of the $Z$ value in Table A is represented in the left-hand (first) column, the values of $\mathrm{Z}$ in the table start from 0 to 3 (nearest tenth), while the first (upper) row provides the second part of the $\mathrm{Z}$ value (second decimal place). We can use the same table to find the area under the curve for negative $Z$ values because of the symmetrical property of normal distribution.

Example 2.1: Compute the area to the left of a $\mathrm{Z}$ value: Compute the area under the standard normal curve to the left of a positive $\mathrm{Z}$ value of $2.13$.

Finding the area to the left of a positive $\mathrm{Z}$ value of $2.13$ requires using Table $\mathrm{A}$ in the Appendix for the standard normal. The value ” $2.13$ ” should be divided into two pieces, the first piece is “2.1” and the second is “0.03.” The exact area to the left of $2.13$ can be computed employing the steps below.

• The first step is to search for the position of ” $2.1$ ” in the first vertical column of Table $2.1$ labeled $\mathrm{Z}$ to specify the first piece “2.1” of the number $2.13$ (highlighted row) [Table $2.1$ is a portion of the standard normal table in the Appendix (Table A)].
• The second step in finding the area is to move on the row of ” $2.1$ ” to the column labeled “0.03” (highlighted column), the point of intersection represents the required value which is $\mathbf{0 . 9 8 3 4}$ as shown in Table $2.1$ (bold value).
The exact area to the left of $2.13$ is shown in Fig. $2.3$ (shaded area).

## 统计代写|假设检验代写hypothesis testing代考|Hypothesis testing for one sample mean

Consider a large sample of size $n(n \geq 30)$ that is selected from a normally distributed population and $Y$ represents a random variable of interest. A claim regarding the mean value of the variable of interest can be tested employing Z-test for one sample mean to make a decision regarding the mean value. The mathematical formula for computing the test statistic value for one sample Z-test is presented in Eq. (2.4).
$$Z=\frac{\bar{Y}-\mu_0}{\sigma / \sqrt{n}}$$
where,
$\bar{Y}$ represents the sample mean,
$\mu_0$ represents the claimed value (hypothesized mean),
$\sigma$ represents the population standard deviation, and
$n$ represents the sample size used.
The computed test statistic value obtained from the sample data (2.4) is usually used to make a decision to reject or not to reject the null hypothesis regarding the mean value of the variable of interest. The procedure of making a decision is to compare the test statistic value with the theoretical value (critical value) of the normal distribution or using a normal distribution curve.

Example 2.5: The concentration of cadmium of surface water: A professor at an environmental section wanted to verify the claim that the mean concentration of cadmium (Cd) of surface water in Juru River is $1.4(\mathrm{mg} / \mathrm{L})$. He selected 35 samples and tested for the cadmium concentration. The collected data showed that the mean concentration of cadmium is $1.6$ and the standard deviation of the population is $0.4$. A significance level of $\alpha=0.01$ is chosen to test the claim. Assume that the population is normally distributed.

Ihe general procedure for conducting hypothesis testing can be used to make the decision regarding the mean concentration of cadmium of surface water in Juru River.
Step 1: Specify the null and alternative hypotheses
The mean concentration of cadmium of surface water in Juru River $(\mu)$ is $1.4$, this claim should be under the null hypothesis because the claim represents equality $(=)$. If the mean concentration of cadmium of surface water in Juru River is not equal to $1.4$, then two directions should be considered, the first direction could be the mean concentration of cadmium is greater than $1.4$ and the second direction could be the mean concentration of cadmium is less than 1.4. The two directions (greater than and less than) can be represented mathematically as $\neq$. Thus we can write the two hypotheses (null and alternative) as presented in Eq. (2.5).

# 假设检验代写

## 统计代写|假设检验代写hypothesis testing代考|寻找normal-curve下的面积

.

• 第一步是搜索”的位置 $2.1$ 在表格的第一列 $2.1$ 有标签的 $\mathrm{Z}$ 指定数字的第一个部分“2.1” $2.13$ (突出显示的行)[表 $2.1$ 是附录(表a)中标准正常表的一部分]。求面积的第二步是移动到”的那一行 $2.1$ 对于标记为“0.03”的列(高亮显示的列)，交点表示所需值为 $\mathbf{0 . 9 8 3 4}$ 如表所示 $2.1$ (粗体)。
恰好在…左边的区域 $2.13$ 如图所示。 $2.3$

.(阴影区域)

## 统计代写|假设检验代写hypothesis -testing代考|一个样本均值的假设检验

$$Z=\frac{\bar{Y}-\mu_0}{\sigma / \sqrt{n}}$$

$\bar{Y}$代表样本均值，
$\mu_0$代表声称值(假设均值)，
$\sigma$代表总体标准差，
$n$代表使用的样本量。

Juru河地表水镉的平均浓度$(\mu)$是$1.4$，这个主张应该在原假设下，因为主张代表平等$(=)$。如果Juru河地表水中镉的平均浓度不等于$1.4$，那么应该考虑两个方向，第一个方向可以是镉的平均浓度大于$1.4$，第二个方向可以是镉的平均浓度小于1.4。两个方向(大于和小于)可以用数学表示为$\neq$。因此，我们可以写出如Eq.(2.5)所示的两个假设(null和alternative)

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师