如果你也在 怎样代写线性规划Linear Programming这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

线性规划,数学建模技术,其中一个线性函数在受到各种约束时被最大化或最小化。这种技术对于指导商业规划、工业工程中的定量决策非常有用,在较小的程度上也适用于社会和物理科学。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写线性规划Linear Programming方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写线性规划Linear Programming代写方面经验极为丰富,各种代写线性规划Linear Programming相关的作业也就用不着说。

我们提供的线性规划Linear Programming及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|线性规划作业代写Linear Programming代考|МАТТ387

数学代写|线性规划作业代写Linear Programming代考|Relations to Convex Geometry

Our development to this point, including the above proof of the fundamental theorem, has been based only on elementary properties of systems of linear equations. These results, however, have interesting interpretations in terms of the theory of convex sets that can lead not only to an alternative derivation of the fundamental theorem, but also to a clearer geometric understanding of the result. The main link between the algebraic and geometric theories is the formal relation between basic feasible solutions of linear inequalities in standard form and extreme points of polytopes. We establish this correspondence as follows. The reader is referred to Appendix B for a more complete summary of concepts related to convexity, but the definition of an extreme point is stated here.
Definition A point $\mathbf{x}$ in a convex set $C$ is said to be an extreme point of $C$ if there are no two distinct points $\mathbf{x}{1}$ and $\mathbf{x}{2}$ in $C$ such that $\mathbf{x}=\alpha \mathbf{x}{1}+(1-\alpha) \mathbf{x}{2}$ for some $\alpha, 0<\alpha<1$.

An extreme point is thus a point that does not lie strictly within a line segment connecting two other points of the set. The extreme points of a triangle, for example, are its three vertices.
Theorem (Equivalence of Extreme Points and Basic Solutions) Let $\mathbf{A}$ be an $m \times n$ matrix of rank $m$ and $\mathbf{b}$ an $m$-vector. Let $K$ be the convex polytope consisting of all $n$-vectors $\mathbf{x}$ satisfying
$$
\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant 0
$$
A vector $\mathbf{x}$ is an extreme point of $K$ if and only if $\mathbf{x}$ is a basic feasible solution to (2.19).
Proof Suppose first that $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}, 0,0, \ldots, 0\right)$ is a basic feasible solution to (2.19). Then
$$
x_{1} \mathbf{a}{1}+x{2} \mathbf{a}{2}+\cdots+x{m} \mathbf{a}{m}=\mathbf{b} $$ where $\mathbf{a}{1}, \mathbf{a}{2}, \ldots, \mathbf{a}{m}$, the first $m$ columns of $\mathbf{A}$, are linearly independent. Suppose that $\mathbf{x}$ could be expressed as a convex combination of two other points in $K$; say, $\mathbf{x}=\alpha \mathbf{y}+(1-\alpha) \mathbf{z}, 0<\alpha<1, \mathbf{y} \neq \mathbf{z}$. Since all components of $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are nonnegative and since $0<\alpha<1$, it follows immediately that the last $n-m$ components of $\mathbf{y}$ and $\mathbf{z}$ are zero. Thus, in particular, we have
$$
y_{1} \mathbf{a}{1}+y{2} \mathbf{a}{2}+\cdots+y{m} \mathbf{a}{m}=\mathbf{b} $$ and $$ z{1} \mathbf{a}{1}+z{2} \mathbf{a}{2}+\cdots+z{m} \mathbf{a}_{m}=\mathbf{b}
$$

数学代写|线性规划作业代写Linear Programming代考|Farkas’ Lemma and Alternative Systems

We now present a theorem to check whether or not a feasible solution exists for constraint system (2.19). If one can find a single solution to meet all the constraints, then it is a “positive” certificate to prove the system feasible. The question is: how could we construct a “negative” certificate to prove the system infeasible?
Theorem (Farkas’ Lemma) Let $\mathbf{A}$ be an $m \times n$ matrix and $\mathbf{b}$ an m-vector. The system of constraints
$$
\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0}
$$
has a feasible solution $\mathbf{x}$ if and only if the system of constraints
$$
-\mathbf{y}^{T} \mathbf{A} \geqslant \mathbf{0}, \mathbf{y}^{T} \mathbf{b}=1(\text { or }>0)
$$
has no feasible solution y. Therefore a single feasible solution y for system (2.21) establishes a certificate to prove system (2.20) infeasible.
The two systems, (2.20) and (2.21), are called alternative systems: one of them is feasible and the other is infeasible.

Example 1 Let $1 \times 2$ matrix $\mathbf{A}=(11)$ and scalar $b=-1$. Then, $y=-1$ is feasible for system (2.21), which proves that system (2.20) is infeasible.
Before we prove the theorem, we first present a lemma.
Lemma 1 Let $C$ be the cone generated by the columns of matrix $\mathbf{A}$, that is,
$$
C=\left{\mathbf{A x} \in E^{m}: \mathbf{x} \geqslant \mathbf{0}\right} .
$$
Then $C$ is a closed and convex set.
The definition of cone and conic combination can be found in Sect. A.3. We leave the proof of the lemma as an exercise, where the closeness proof needs to use Carathéodory’s theorem given in Sect. 2.4.

数学代写|线性规划作业代写Linear Programming代考|МАТТ387

线性规划代写

数学代写|线性规划作业代写Linear Programming代考|Relations to Convex Geometry

我们对这一点的发展,包括上述基本定理的证明,仅基于线性方程组的基本性质。然而,这些结果在凸集理论方面具有有趣的解释,不仅可以㝵致基本定理的另一 种推导,而且可以对结果进行更清晰的几何理解。代数和几何理论之间的主要联系是标准形式的线性不等式的基本可行解与多面体的极值点之间的形式关系。我们 如下建立这种对应关系。读者可以参考附录 $\mathrm{B}$ 以获得与凸性相关的概念的更完整摘要,但此处说明了极值点的定义。
定义 $\mathrm{A}$ 点 $\mathrm{x}$ 在凸集 $C$ 据说是一个极点 $C$ 如果没有两个不同的点 $\mathrm{x} 1$ 和 $\mathrm{x} 2$ 在 $C$ 这样 $\mathrm{x}=\alpha \mathrm{x} 1+(1-\alpha) \mathrm{x} 2$ 对于一些 $\alpha, 0<\alpha<1$.
因此,极值点是不严格位于连接集合中其他两个点的线段内的点。例如,三角形的极值点是它的三个顶点。
定理(极值和基本解等价)让 $\mathbf{A}$ 豆 $m \times n$ 秩矩阵 $m$ 和 $\mathbf{b} 一$ 个 $m$-向量。让 $K$ 是由所有组成的凸多面体 $n$-向量 $\mathbf{x}$ 令人满意的
$$
\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant 0
$$
一个向量 $\mathbf{x}$ 是一个极值点 $K$ 当且仅当 $\mathbf{x}$ 是 $(2.19)$ 的基本可行解。
证明首先假设 $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}, 0,0, \ldots, 0\right)$ 是 $(2.19)$ 的基本可行解。然后
$$
x_{1} \mathbf{a} 1+x 2 \mathbf{a} 2+\cdots+x m \mathbf{a} m=\mathbf{b}
$$
在哪里 $\mathbf{a} 1, \mathbf{a} 2, \ldots, \mathbf{a} m$ ,首先 $m$ 列 $\mathbf{A}$, 是线性独立的。假设 $\mathbf{x}$ 可以表示为其他两个点的凸组合 $K$; 说, $\mathbf{x}=\alpha \mathbf{y}+(1-\alpha) \mathbf{z}, 0<\alpha<1, \mathbf{y} \neq \mathbf{z}$. 由于所有组件 $\mathbf{x}, \mathbf{y}, \mathbf{z}$ 是非负的,因为 $0<\alpha<1$ ,䋈接着最后一个 $n-m$ 的组成部分 $\mathbf{y}$ 和 $\mathbf{z}$ 为零。因此,特别是,我们有
$$
y_{1} \mathbf{a} 1+y 2 \mathbf{a} 2+\cdots+y m \mathbf{a} m=\mathbf{b}
$$

$$
z \mathbf{1} \mathbf{a} 1+z 2 \mathbf{a} 2+\cdots+z m \mathbf{a}_{m}=\mathbf{b}
$$

数学代写|线性规划作业代写Linear Programming代考|Farkas’ Lemma and Alternative Systems

我们现在提出一个定理来检查约束系统 (2.19) 是否存在可行的解决方案。如果可以找到满足所有约束的单一解决方案,那么它就是证明系统可行的“肯定“证书。问 题是: 我们如何构造一个“否定“证书来证明系统不可行?
定理 (法卡斯引|理) 让 $\mathbf{A}$ 豆 $m \times n$ 矩阵和 $\mathbf{b}$ 一个 $m$ 向量。约束系统
$$
\mathbf{A x}=\mathbf{b}, \mathbf{x} \geqslant \mathbf{0}
$$
有一个可行的解决方案 $\mathbf{x}$ 当且仅当约束系统
$$
-\mathbf{y}^{T} \mathbf{A} \geqslant \mathbf{0}, \mathbf{y}^{T} \mathbf{b}=1(\text { or }>0)
$$
没有可行解 $\mathrm{y}$ 。因此,系统 (2.21) 的单个可行解 y 建立了证明系统 (2.20) 不可行的证书。
(2.20) 和 (2.21) 这两个系统被称为替代系统: 一个是可行的,另一个是不可行的。
示例 1 让 $1 \times 2$ 矩阵 $\mathbf{A}=(11)$ 和标量 $b=-1$. 然后, $y=-1$ 对系统(2.21)是可行的,证明系统(2.20)是不可行的。
在证明定理之前,我们首先提出一个引理。
引|理 1 让 $C$ 是由矩阵的列生成的圆雉 $\mathbf{A}$ ,那是,
\left 的分隔符缺失或无法识别
然后 $C$ 是闭凸集。
圆雉和圆雉组合的定义可以在第 3 节中找到。A.3。我们将引理的证明留作练习,其中接近性证明需要使用 Sect 中给出的 Carathéodory 定理。 $2.4 .$

数学代写|线性规划作业代写Linear Programming代考 请认准assignmentutor™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写