assignmentutor™您的专属作业导师

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写线性回归linear regression方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写线性回归linear regression代写方面经验极为丰富，各种代写线性回归linear regression相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|线性回归代写linear regression代考|The ANOVA F Test

After fitting least squares and checking the response and residual plots to see that an MLR model is reasonable, the next step is to check whether there is an MLR relationship between $Y$ and the nontrivial predictors $x_2, \ldots, x_p$. If at least one of these predictors is useful, then the OLS fitted values $\hat{Y}_i$ should be used. If none of the nontrivial predictors is useful, then $\bar{Y}$ will give as good predictions as $\hat{Y}_i$. Here the sample mean $$\bar{Y}=\frac{1}{n} \sum_{i=1}^n Y_i$$
In the definition below, $S S E$ is the sum of squared residuals and a residual $r_i=\hat{e}i=$ “errorhat.” In the literature “errorhat” is often rather misleadingly abbreviated as “error.” Definition 2.14. Assume that a constant is in the MLR model. a) The total sum of squares $$\text { SSTO }=\sum{i=1}^n\left(Y_i-\bar{Y}\right)^2 .$$
b) The regression sum of squares
$$S S R=\sum_{i=1}^n\left(\hat{Y}i-\bar{Y}\right)^2 .$$ c) The residual sum of squares or error sum of squares is $$S S E=\sum{i=1}^n\left(Y_i-\hat{Y}i\right)^2=\sum{i=1}^n r_i^2 .$$
The result in the following proposition is a property of least squares (OLS), not of the underlying MLR model. An obvious application is that given any two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the formula $S S T O=S S E+S S R$.

## 统计代写|线性回归代写linear regression代考|The Partial F Test

Suppose that there is data on variables $Z, w_1, \ldots, w_r$ and that a useful MLR model has been made using $Y=t(Z), x_1 \equiv 1, x_2, \ldots, x_p$ where each $x_i$ is some function of $w_1, \ldots, w_r$. This useful model will be called the full model. It is important to realize that the full model does not need to use every variable $w_j$ that was collected. For example, variables with outliers or missing values may not be used. Forming a useful full model is often very difficult, and it is often not reasonable to assume that the candidate full model is good based on a single data set, especially if the model is to be used for prediction.
Even if the full model is useful, the investigator will often be interested in checking whether a model that uses fewer predictors will work just as well. For example, perhaps $x_p$ is a very expensive predictor but is not needed given that $x_1, \ldots, x_{p-1}$ are in the model. Also a model with fewer predictors tends to be easier to understand.

Definition 2.21. Let the full model use $Y, x_1 \equiv 1, x_2, \ldots, x_p$ and let the reduced model use $Y, x_1, x_{i_2}, \ldots, x_{i_q}$ where $\left{i_2, \ldots, i_q\right} \subset{2, \ldots, p}$.
The partial $F$ test is used to test whether the reduced model is good in that it can be used instead of the full model. It is crucial that the reduced model be selected before looking at the data. If the reduced model is selected after looking at output and discarding the worst variables, then the p-value for the partial $F$ test will be too high. For (ordinary) least squares, usually a constant is $11 s e d$, and we are assuming that hoth the full model and the reduced model contain a constant. The partial $F$ test has null hypothesis Ho: $\beta_{i_{q+1}}=\cdots=\beta_{i_p}=0$, and alternative hypothesis $H_A:$ at least one of the $p_{i j} \neq 0$ for $j>q$. The mill hypothesis is ermivalemt to Ho. “he redinced motiel is good.” Since only the full model and reduced model are being compared, the alternative hypothesis is equivalent to $H_A$ : “the reduced model is not as good as the full model, so use the full model,” or more simply, $H_A$ : “use the full model.”

# 线性回归代写

## 统计代写|线性回归代写线性回归代考|The ANOVA F Test

b)回归平方和
$$S S R=\sum_{i=1}^n\left(\hat{Y}i-\bar{Y}\right)^2 .$$ c)残差平方和或误差平方和为 $$S S E=\sum{i=1}^n\left(Y_i-\hat{Y}i\right)^2=\sum{i=1}^n r_i^2 .$$以下命题的结果是最小二乘(OLS)的属性，而不是底层MLR模型的属性。一个明显的应用是，给定SSTO, SSE和SSR中的任意两个，可以用这个公式求出第三个平方和 $S S T O=S S E+S S R$.

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师