如果你也在 怎样代写数学建模math modelling这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数学建模指的是对现实世界的情景创建一个数学表示,以进行预测或提供洞察力的过程。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写数学建模math modelling方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数学建模math modelling代写方面经验极为丰富,各种代写数学建模math modelling相关的作业也就用不着说。

我们提供的数学建模math modelling及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|数学建模代写math modelling代考|MATH1800

数学代写|数学建模代写math modelling代考|Conjugation Attacks

Let $H_{1}, H_{2}$ be linear sums of $F_{1}, \ldots, F_{m}$. Due to (13), we see that
$$
H_{1}^{-1} H_{2}=S^{-1}\left(Q_{1}^{-1} Q_{2}\right) S,
$$
where $Q_{1}, Q_{2}$ are linear sums of $G_{1}, \ldots, G_{m}$. If $Q_{1}^{-1} Q_{2}$ has special properties for conjugation, the attacker can recover $S$ partially.

For example, the coefficient matrices $G_{1}, \ldots, G_{m}$ on the oil and vinegar signature scheme $(O V)$ (Sect. 4.1.1, [81]) are expressed by $\left(\begin{array}{cc}0_{m} * \ * & *\end{array}\right)$, which means
$$
H_{1}^{-1} H_{2}=S^{-1}\left(\begin{array}{cc}
0_{m} & * \

  • & *{m} \end{array}\right)\left(\begin{array}{cc} *{m} & * \
  • & 0_{m}
    \end{array}\right) S=S^{-1}\left(\begin{array}{cc}
    *{m} & * \ 0 & *{m}
    \end{array}\right) S .
    $$
    By using the equation above, Kipnis and Shamir [63] proposed a polynomial time key, Kipnis-Shamir’s attack breaks OV.

This attack is also available on the signature scheme YTS (Sect. 4.3.2, [55, 111]) and on MPKCs derived from a quadratic map over an extension field (Sect. 4.2.4, $[23,59,107])$, since the coefficient matrices $F_{i}$ ‘s are respectively expressed by $S^{t}\left(G_{i}^{\prime} \otimes I_{r}\right) S$ with smaller matrix $G_{i}^{\prime}$ and $\tilde{S}^{t}\left(\begin{array}{cc}{N} & \ & \ddots \ & { }{ N}\end{array}\right) \tilde{S}$ with a divisor $N \mid n$ and a matrix $\tilde{S}$ over an extension field including the secret key $S$.

Remark that this attack cannot be used directly when the field is of even characteristic. When $k$ is of even characteristic, the coefficient matrix $H$ cannot be symmetric. Then, instead of $H$, the attacker will use the matrix $\hat{H}:=H+H^{t}$. Since $\hat{H}$ is skew-symmetric ( $\left.\hat{H}+\hat{H}^{t}=0\right), \hat{H}$ is not invertible when $n$ is odd and the characteristic polynomial of $\hat{H}{1}^{-1} \hat{H}{2}$ is a square of a smaller degree polynomial when $n$ is even (see $e_{*} g_{s},[20,40,101]$ ). Thus more delicate discussions are required for even characteristic cases.

数学代写|数学建模代写math modelling代考|Linearization Attacks

Recall that Patarin’s attack on MI (Sect. $2.3,[79]$ ) recovers polynomials in the form
$$
L(x, y):=\sum_{1 \leq i, j \leq n} \alpha_{i j} x_{i} y_{j}+\sum_{1 \leq i \leq n} \beta_{i} x_{i}+\sum_{1 \leq j \leq n} \gamma_{j} y_{j}+\delta
$$
satisfying $L(x, y)=0$ for arbitrary plaintext-ciphertext pairs $(x, y)$. The linearization attack is to recover such polynomials if there exist. Once the attacker obtains such polynomials, he/she will get (candidates of) the plaintexts $x$ of given ciphertexts $y$.

The basic approach to determine $L$ is as follows. First, prepare sufficiently many plaintext-ciphertext pairs $(x, y)$. Next, generate a system of linear equations of the coefficients in $L$ by the pairs $(x, y)$. Finally, solve the linear equations to determine the coefficients of $L$. The complexity of this attack depends on the number of monomials in $L$. For example, on MI, the complexity of the linearization attack is $O\left(n^{2 w}\right)$ since the number of monomials in (14) is $(n+1)^{2}$.

Such an attack is extended to MFE $[37,107]$ and the simple matrix encryption scheme [99]. On MFE, there exist quadratic polynomials $h_{1}(y), \ldots, h_{n+1}(y)$ such that
$$
L(x, y):=\sum_{1 \leq i \leq n} x_{i} \cdot h_{i}(y)+h_{n+1}(y)
$$

数学代写|数学建模代写math modelling代考|MATH1800

数学建模代写

数学代写|数学建模代写math modelling代考|Conjugation Attacks

让 $H_{1}, H_{2}$ 是的线性和 $F_{1}, \ldots, F_{m}$. 由于 (13),我们看到
$$
H_{1}^{-1} H_{2}=S^{-1}\left(Q_{1}^{-1} Q_{2}\right) S,
$$
例如,系数矩阵 $G_{1}, \ldots, G_{m}$ 关于油和醋签名计划 $(O V)$ (第 4.1.1 节,[81]) 表示为 $\left(0_{m} * * \right)$ , 这意味着 $\$ \$$ $H_{-}{1}^{\wedge}{-1} H_{-}{2}=S^{\wedge}{-1}$ left $\cap$ begin{array $\left.} c c\right}$ $0{\operatorname{m}} \&{ }^{} \backslash$

  • \& * ${\mathrm{m}} \backslash$ \end{array } } \backslash \text { ight } ) \backslash \text { left } ( \text { begin } { \operatorname { a r r a y } } { \mathrm { cc } } { } ^ { * } { \mathrm { m } } \& { } ^ { * } \backslash
  • \& 0_{m}
    \end } { \text { 数组 } } \backslash \text { right) } S = S ^ { \wedge } { – 1 } \backslash l e f t (
    $* m \quad * 0 \quad * m$
    (又寸) $5 。$
    $\$ \$$
    通过使用上面的等式,Kipnis 和 Shamir [63] 提出了一个多项式时间密钥,Kipnis-Shamir 的攻击打破了 OV。
    这种攻击也适用于签名方案 YTS (第 4.3.2 节, [55, 111]) 和从扩展域上的二次映射派生的 MPKC (第 $4.2 .4$ 节, $[23,59,107]$ ), 因为系数矩阵 $F_{i}$ 分别表示为 $S^{t}\left(G_{i}^{\prime} \otimes I_{r}\right) S$ 具有较小的矩阵 $G_{i}^{\prime}$ 和 $\tilde{S}^{t}\left(\begin{array}{lll} & \ddots & \ddots\end{array}\right) \tilde{S}$ 有一个除数 $N \mid n$ 和一个矩阵 $\tilde{S} \tilde{1}$ 在包含密钥的扩展字段上 $S$.
    请注意,当场是偶数特性时,不能直接使用此攻击。什么时候 $k$ 是偶数特征,系数矩阵 $H$ 不能对称。然后,而不是 $H$ ,攻击者将使用矩阵 $\hat{H}:=H+H^{t}$. 自从 $\hat{H}$ 是 斜对称的 $\left(\hat{H}+\hat{H}^{t}=0\right), \hat{H}$ 不可逆时 $n$ 是奇数,特征多项式为 $\hat{H} 1^{-1} \hat{H} 2$ 是较小次数多项式的平方,当 $n$ 是偶数(见 $\left.e_{*} g_{s},[20,40,101]\right)$ 。因此,即使是典型的案 例,也需要进行更细致的讨论。

数学代写|数学建模代写math modelling代考|Linearization Attacks

回想一下 Patarin 对 MI 的攻击 (Sect.2.3, [79]) 以形式恢复多项式
$$
L(x, y):=\sum_{1 \leq i, j \leq n} \alpha_{i j} x_{i} y_{j}+\sum_{1 \leq i \leq n} \beta_{i} x_{i}+\sum_{1 \leq j \leq n} \gamma_{j} y_{j}+\delta
$$
令人满意的 $L(x, y)=0$ 对于任意明文-密文对 $(x, y)$. 线性化攻击是恢复这样的多项式 (如果存在) 。一旦攻击者获得伩样的多项式,他/她将获得 (候选) 明文 $x$ 给定 密文的 $y$.
基本判断方法 $L$ 如下。首先,准备足够多的明文-密文对 $(x, y)$. 接下来,生成系数的线性方程组 $L$ 由对 $(x, y)$. 最后,求解线性方程以确定系数 $L$. 这种攻击的复杂性取 决于单项式的数量 $L$. 例如,在 MI 上,线性化攻击的复杂度为 $O\left(n^{2 w}\right)$ 因为 $(14)$ 中的单项式数量是 $(n+1)^{2}$.
这样的攻击扩展到 MFE $[37,107]$ 和简单的矩阵加密方案[99]。在 MFE 上,存在二次多项式 $h_{1}(y), \ldots, h_{n+1}(y)$ 这样
$$
L(x, y):=\sum_{1 \leq i \leq n} x_{i} \cdot h_{i}(y)+h_{n+1}(y)
$$

数学代写|数学建模代写math modelling代考 请认准assignmentutor™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写