assignmentutor-lab™ 为您的留学生涯保驾护航 在代写多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富，各种代写多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Multiple Linear Model

The simple linear model and the analysis of variance model can be viewed as a particular case of a more general linear model where the variations of one variable $y$ are explained by $p$ explanatory variables $x$ respectively. Let $y(n \times 1)$ and $\mathcal{X}(n \times p)$ be a vector of observations on the response variable and a data matrix on the $p$ explanatory variables. An important application of the developed theory is the least squares fitting. The idea is to approximate $y$ by a linear combination $\hat{y}$ of columns of $\mathcal{X}$, i.e. $\hat{y} \in C(\mathcal{X})$. The problem is to find $\hat{\beta} \in \mathbb{R}^{p}$ such that $\hat{y}=\mathcal{X} \hat{\beta}$ is the best fit of $y$ in the least-squares sense. The linear model can be written as
$$y=\mathcal{X} \beta+\varepsilon,$$
where $\varepsilon$ are the errors. The least squares solution is given by $\hat{\beta}$ :
$$\hat{\beta}=\arg \min {\beta}(y-\mathcal{X} \beta)^{\top}(y-\mathcal{X} \beta)=\arg \min {\beta} \varepsilon^{\top} \varepsilon .$$

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The ANOVA Model in Matrix Notation

The simple ANOVA problem (Sect. 3.5) may also be rewritten in matrix terms. Recall the definition of a vector of ones from (2.1) and define a vector of zeros as $0_{n}$. Then construct the following $(n \times p)$ matrix (here $p=3$ ),
$$\mathcal{X}=\left(\begin{array}{lll} 1_{m} & 0_{m} & 0_{m} \ 0_{m} & 1_{m} & 0_{m} \ 0_{m} & 0_{m} & 1_{m} \end{array}\right)$$
where $m=10$. Equation (3.41) then reads as follows.
The parameter vector is $\beta=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{\top}$. The data set from Example $3.14$ can therefore be written as a linear model $y=\mathcal{X} \beta+\varepsilon$ where $y \in \mathbb{R}^{n}$ with $n=m \cdot p$ is the stacked vector of the columns of Table 3.1. The projection into the column space $C(\mathcal{X})$ of (3.54) yields the least-squares estimator $\hat{\beta}=\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} y$. Note that $\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1}=(1 / 10) \mathcal{I}{3}$ and that $\mathcal{X}^{\top} y=(106,124,151)^{\top}$ is the sum $\sum{k=1}^{m} y_{k j}$ for each factor, i.e. the three column sums of Table 3.1. The least squares estimator is therefore the vector $\hat{\beta}{H{1}}=\left(\hat{\mu}{1}, \hat{\mu}{2}, \hat{\mu}{3}\right)=(10.6,12.4,15.1)^{\top}$ of sample means for each factor level $j=1,2,3$. Under the null hypothesis of equal mean values $\mu{1}=\mu_{2}=\mu_{3}=\mu$, we estimate the parameters under the same constraints. This can be put into the form of a linear constraint:
\begin{aligned} &-\mu_{1}+\mu_{2}=0 \ &-\mu_{1}+\mu_{3}=0 \end{aligned}
This can be written as $\mathcal{A} \beta=a$, where
$$a=\left(\begin{array}{l} 0 \ 0 \end{array}\right)$$ and
$$\mathcal{A}=\left(\begin{array}{lll} -1 & 1 & 0 \ -1 & 0 & 1 \end{array}\right)$$

# 多元统计分析代考

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Multiple Linear Model

$$y=\mathcal{X} \beta+\varepsilon$$

$$\hat{\beta}=\arg \min \beta(y-\mathcal{X} \beta)^{\top}(y-\mathcal{X} \beta)=\arg \min \beta \varepsilon^{\top} \varepsilon .$$

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The ANOVA Model in Matrix Notation

$$\mathcal{X}=\left(\begin{array}{lllllll} 1_{m} & 0_{m} & 0_{m} 0_{m} & 1_{m} & 0_{m} 0_{m} & 0_{m} & 1_{m} \end{array}\right)$$

$$-\mu_{1}+\mu_{2}=0 \quad-\mu_{1}+\mu_{3}=0$$

$$a=(00)$$

$$\mathcal{A}=\left(\begin{array}{llllll} -1 & 1 & 0 & -1 & 0 & 1 \end{array}\right)$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师