如果你也在 怎样代写运筹学operational research这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

运筹学(OR)是一种解决复杂系统管理问题的科学方法,使决策者能够做出更好的决策。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写运筹学operational research方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写运筹学operational research代写方面经验极为丰富,各种代写运筹学operational research相关的作业也就用不着说。

我们提供的运筹学operational research及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|运筹学作业代写operational research代考|MAST30013

统计代写|运筹学作业代写operational research代考|Simulated Annealing

Das stochastische Suchverfahren des Simulated Annealing (deutsch: simuliertes Abkühlen) bildet einen werkstoffkundlichen Abkühlungsprozess, wie er etwa beim Glühen auftritt, nach ([30]). Dort sorgt eine langsame Abkühlung nach Erhitzen eines Metalls dafür, dass den Atomen ausreichend Zeit für eine stabile Kristallbildung bleibt. Der erreichte Zustand entspricht einem energetischen Minimalzustand, nahe am Optimum. Übertragen auf Optimierungsprobleme entspricht der Kontrollparameter Temperatur einer Wahrscheinlichkeit $p$, mit der sich ein Zwischenergebnis der Optimierung auch verschlechtern darf. Im Gegensatz zur lokalen Suche kann ein lokales Optimum somit wieder verlassen werden. Man betrachtet in Anlehnung an die physische Analogie Simulated Annealing Verfahren meist für Minimierungsprobleme (s. Abb. 6.4).

In jeder Iteration des Verfahrensablaufs wird ein Nachbarpunkt $x^{\prime} \in N(x)$ zufällig bestimmt. Ist $x^{\prime}$ besser als der momentan beste Punkt $x$, so wird mit $x^{\prime}$ fortgesetzt. Ist $x^{\prime}$ schlechter als $x$, so wird mit einer zu spezifizierenden Wahrscheinlichkeit $p$ mit $x^{\prime}$ fortgesetzt; $x$ muss weiterhin als bester bislang gefundener Punkt gespeichert werden. Die Wahrscheinlichkeit hängt vom Ausmaß der Verschlechterung ab und wird im Laufe des Verfahrens durch einen Temperaturparameter $T$ dem Wert 0 angenähert. Wenn $T<T_0$ für eine Minimaltemperatur $T_0$ ist, wird das Verfahren abgebrochen.

Algorithmus $6.5$ gibt das allgemeine Vorgehen der Simulated Annealing Metaheuristik für Minimierungsprobleme wieder. Zur Wahl von $x^{\prime}$ kann ein Zufallszahlengenerator verwendet werden.

Beim Tabu Search Verfahren (deutsch: Tabu-Suche) wird in jeder Iteration die Nachbarschaft $N(x)$ des aktuellen Punktes $x$ komplett durchsucht ([23]). Hiervon wird der beste Punkt, auch wenn er schlechter als $x$ ist, in jedem Falle ausgewählt. Um nicht immer dieselben Lösungen zu erhalten, wird daneben eine Tabu-Liste gefiihrt, deren Tösungen nicht ansgewählt werden dïrfen. Die Flemente der TahuListe erfüllen sogenannte Tabu-Eigenschaften, die das Durchlaufen von Zyklen zu verhindern versuchen. Dieses Vorgehen ist sinnvoll, da auf diese Weise temporär Punkte ausgeschlossen werden können, die nicht weit genug vom lokalen Optimum wegführen und erneut aufgesucht würden. Bei der Tabu-Suche handelt es sich somit um ein beschränktes Suchverfahren mit einem abgestuften Gedächtnis.Algorithmus $6.6$ stellt die allgemeine Vorgehensweise von Tabu Search für Minimierungsprobleme dar. Als Abbruchkriterium verwendet man oft das Erreichen einer maximalen Anzahl an Iterationen ohne Verbesserung.

Wir verbcssern den in Beispiel $6.2$ gefundenen Punkt $x=(1,1,1,0,0)^{\top}$ mittels Tabu Search. Die Nachbarschaft $N(x)$ von $x$ definieren wir als Menge aller zulässigen Punkte, die sich von $x$ in genau einer Komponente unterscheiden. In die Tabu-Liste nehmen wir nach einer Iteration immer diejenigen Punkte auf, die den alten Eintrag der veränderten Komponente besitzen. Die Gedächtnislänge der Tabu-Liste sei durch zwei Iterationen bestimmt. Der Lösungsablauf ist in Tabelle $6.5$ dargestellt. Dabei bedeutet $q_i$ für $i \in{0,1}$, dass in der $q$-ten Komponente der Eintrag $i$ tabu ist.

统计代写|运筹学作业代写operational research代考|MAST30013

运筹学代考

统计代写|运筹学作业代写operational research代考|Simulated Annealing

模拟退火的随机搜索方法模拟了与材料相关的冷却过程,例如在退火期间发生的冷却过程([30])。在那里,加热金属后缓慢冷却可确保原子有足够的时间形成稳 定的晶体。达到的状态对应于能量最小状态,接近最佳状态。应用于优化问题,温度控制参数对应一个概率 $p$ ,优化的中间结果也可能恶化。与局部搜索相反,因 此可以再次留下局部最优值。基于物理类比,模拟退火方法通常被考虑用于最小化问题(见图 6.4)。
在程序的每次迭代中,相邻点 $x^{\prime} \in N(x)$ 随机确定。是 $x^{\prime}$ 优于当前最佳点 $x$, 所以也会 $x^{\prime}$ 继续。是 $x^{\prime}$ 比…更差 $x$, 然后以指定的概率 $p$ 和 $x^{\prime}$ 继续 $x$ 仍然必须保存为迄今为 止找到的最佳点。概率取决于劣化程度,并由程序过程中的温度参数确定 $T$ 接近 0 的值。如果 $T<T_0$ 最低温度 $T_0$ 即,该过程被中止。
算法 $6.5$ 给出了最小化问题的模拟退火元启发式的一般过程. 从中选择 $x^{\prime}$ 可以使用随机数生成器。

统计代写|运筹学作业代写operational research代考|Tabu Search

在每次迭代的禁忌搜索方法 (德语: Tabu-Suche) 中,邻域 $N(x)$ 当前点的 $x$ 完全搜索([23])。这成为最好的点,即使它比 $x$ 在任何情况下都被选中。为了不总是 得到相同的解决方案,在它旁边保留了一个禁忌列表,其中的杀戮可能不会被选中。Tahu 列表中的元素满足了所谓的禁忌属性,这些属性试图防止循环通过。这个 过程是有意义的,因为通过这种方式可以暂时排除那些距离局部最优值不够远并且会再次访问的点。因此,禁忌搜索是一种具有分级记忆算法的受限搜索方法6.6表 示针对最小化问题的禁忌搜索的一般过程。在没有改进的情况下达到最大迭代次数通常用作停止标准。
我们改进了示例 $6.2$ 找到的点 $x=(1,1,1,0,0)^{\top}$ 使用禁忌搜索。邻里 $N(x)$ 从 $x$ 我们定义为所有不同点的集合 $x$ 仅在一个组件上有所不同。在一次迭代之后,我们总 是将那些具有更改组件的旧条目的点包含在禁忌列表中。禁忌列表的内存长度由两次迭代确定。溶液流程见表 $6.5$ 显示。从而意味着 $q_i$ 为了 $i \in 0,1$ 那在 $q$-条目的第一 个组件 $i$ 是禁忌。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写