如果你也在 怎样代写常微分方程ordinary differential equation这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

常微分方程是为一个或多个独立变量的函数及其导数定义的方程。y’=x+1是一个常微分方程的例子。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写常微分方程ordinary differential equation方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写常微分方程ordinary differential equation代写方面经验极为丰富,各种代写常微分方程ordinary differential equation相关的作业也就用不着说。

我们提供的常微分方程ordinary differential equation及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|常微分方程代写ordinary differential equation代考|MATH53

数学代写|常微分方程代写ordinary differential equation代考|Dependence on the initial condition

Usually, in applications several data are only known approximately. If the problem is well-posed, one expects that small changes in the data will result in small changes of the solution. This will be shown in our next theorem. As a preparation we need Gronwall’s inequality.

Lemma $2.7$ (Generalized Gronwall’s inequality). Suppose $\psi(t)$ satisfies
$$
\psi(t) \leq \alpha(t)+\int_0^t \beta(s) \psi(s) d s, \quad t \in[0, T]
$$
with $\beta(t) \geq 0$. Then
$$
\psi(t) \leq \alpha(t)+\int_0^t \alpha(s) \beta(s) \exp \left(\int_s^t \beta(r) d r\right) d s, \quad t \in[0, T] .
$$
Moreover, if in addition $\alpha(s) \leq \alpha(t)$ for $s \leq t$, then
$$
\psi(t) \leq \alpha(t) \exp \left(\int_0^t \beta(s) d s\right), \quad t \in[0, T] .
$$
Proof. Abbreviate $\phi(t)=\exp \left(-\int_0^t \beta(s) d s\right)$. Then one computes
$$
\frac{d}{d t} \phi(t) \int_0^t \beta(s) \psi(s) d s=\beta(t) \phi(t)\left(\psi(t)-\int_0^t \beta(s) \psi(s) d s\right) \leq \alpha(t) \beta(t) \phi(t)
$$

by our assumption (2.34). Integrating this inequality with respect to $t$ and dividing the resulting equation by $\phi(t)$ shows
$$
\int_0^t \beta(s) \psi(s) d s \leq \int_0^t \alpha(s) \beta(s) \frac{\phi(s)}{\phi(t)} d s .
$$
Adding $\alpha(t)$ on both sides and using again (2.34) finishes the proof of the first claim. The second is left as an exercise (Problem 2.10).

We will also use the following simple consequence (Problem 2.11). If
$$
\psi(t) \leq \alpha+\int_0^t(\beta \psi(s)+\gamma) d s, \quad t \in[0, T]
$$
with $\beta \geq 0$, then
$$
\psi(t) \leq \alpha \exp (\beta t)+\frac{\gamma}{\beta}(\exp (\beta t)-1), \quad t \in[0, T]
$$
Now we can show that our IVP is well-posed.

数学代写|常微分方程代写ordinary differential equation代考|Extensibility of solutions

We have already seen that solutions might not exist for all $t \in \mathbb{R}$ even though the differential equation is defined for all $t \in \mathbb{R}$. This raises the question about the maximal interval on which a solution of the IVP (2.11) can be defined.

Suppose that solutions of the IVP (2.11) exist locally and are unique (e.g., $f$ is Lipschitz). Let $\phi_1, \phi_2$ be two solutions of the IVP (2.11) defined on the open intervals $I_1, I_2$, respectively. Let $I=I_1 \cap I_2=\left(T_{-}, T_{+}\right)$and let $\left(t_{-}, t_{+}\right)$be the maximal open interval on which both solutions coincide. I claim that $\left(t_{-}, t_{+}\right)=\left(T_{-}, T_{+}\right)$. In fact, if $t_{+}<T_{+}$, both solutions would also coincide at $t_{+}$by continuity. Next, considering the IVP with initial condition $x\left(t_{+}\right)=\phi_1\left(t_{+}\right)=\phi_2\left(t_{+}\right)$shows that both solutions coincide in a neighborhood of $t_{+}$by Theorem 2.2. This contradicts maximality of $t_{+}$and hence $t_{+}=T_{+}$. Similarly, $t_{-}=T_{-}$.
Moreover, we get a solution
$$
\phi(t)= \begin{cases}\phi_1(t), & t \in I_1 \ \phi_2(t), & t \in I_2\end{cases}
$$
defined on $I_1 \cup I_2$. In fact, this even extends to an arbitrary number of solutions and in this way we get a (unique) solution defined on some maximal interval.

Theorem 2.12. Suppose the IVP (2.11) has a unique local solution (e.g. the conditions of Theorem 2.5 are satisfied). Then there exists a unique maximal solution defined on some maximal interval $I_{\left(t_0, x_0\right)}=\left(T_{-}\left(t_0, x_0\right), T_{+}\left(t_0, x_0\right)\right)$.
Remark: If we drop the requirement that $f$ is Lipschitz, we still have existence of solutions (see Theorem $2.18$ below), but we already know that we loose uniqueness. Even without uniqueness, two given solutions of the IVP (2.11) can slill be glued Logether al $l_0$ (if necessary) to ublain a sululion defined on $I_1 \cup I_2$. Furthermore, Zorn’s lemma ensures existence of maximal solutions in this case.

Now let us look at how we can tell from a given solution whether an extension exists or not.

数学代写|常微分方程代写ordinary differential equation代考|MATH53

常微分方程代写

数学代写|常微分方程代写ordinary differential equation代考|Dependence on the initial condition

通常,在应用程序中,几个数据只能近似地知道。如果问题是适定的,人们期望数据的微小变化会导致解决方案的微小变化。这将在我们的下一个定理中展示。作 为准备,我们需要 Gronwall 不等式。
引理 $2.7$ (广义格隆沃尔不等式)。认为 $\psi(t)$ 满足
$$
\psi(t) \leq \alpha(t)+\int_0^t \beta(s) \psi(s) d s, \quad t \in[0, T]
$$
和 $\beta(t) \geq 0$. 然后
$$
\psi(t) \leq \alpha(t)+\int_0^t \alpha(s) \beta(s) \exp \left(\int_s^t \beta(r) d r\right) d s, \quad t \in[0, T] .
$$
此外,如果另外 $\alpha(s) \leq \alpha(t)$ 为了 $s \leq t$ ,然后
$$
\psi(t) \leq \alpha(t) \exp \left(\int_0^t \beta(s) d s\right), \quad t \in[0, T] .
$$
证明。缩写 $\phi(t)=\exp \left(-\int_0^t \beta(s) d s\right)$. 然后计算
$$
\frac{d}{d t} \phi(t) \int_0^t \beta(s) \psi(s) d s=\beta(t) \phi(t)\left(\psi(t)-\int_0^t \beta(s) \psi(s) d s\right) \leq \alpha(t) \beta(t) \phi(t)
$$
根据我们的假设 $(2.34)$ 。积分这个不等式关于并将得到的方程除以 $\phi(t)$ 节目
$$
\int_0^t \beta(s) \psi(s) d s \leq \int_0^t \alpha(s) \beta(s) \frac{\phi(s)}{\phi(t)} d s .
$$
添加 $\alpha(t)$ 两边并再次使用 (2.34) 完成了第一个声明的证明。第二个留作练习 (问题 2.10) 。
我们还将使用以下简单的结果 (问题 2.11) 。如果
$$
\psi(t) \leq \alpha+\int_0^t(\beta \psi(s)+\gamma) d s, \quad t \in[0, T]
$$
和 $\beta \geq 0$ ,然后
$$
\psi(t) \leq \alpha \exp (\beta t)+\frac{\gamma}{\beta}(\exp (\beta t)-1), \quad t \in[0, T]
$$
现在我们可以证明我们的 IVP 是合适的。

数学代写|常微分方程代写ordinary differential equation代考|Extensibility of solutions

我们已经看到解决方案可能并不适用于所有人 $t \in \mathbb{R}$ 即使微分方程是为所有定义的 $t \in \mathbb{R}$. 这就提出了关于可以定义 IVP (2.11) 解的最大间隔的问题。
假设 IVP (2.11) 的解存在于本地并且是唯一的 (例如, $f$ 是利普免茨) 。让 $\phi_1, \phi_2$ 是定义在开区间上的 IVP (2.11) 的两个解 $I_1, I_2$ ,分别。让 $I=I_1 \cap I_2=\left(T_{-}, T_{+}\right)$然后让 $\left(t_{-}, t_{+}\right)$是两个解重合的最大开区间。我声称 $\left(t_{-}, t_{+}\right)=\left(T_{-}, T_{+}\right)$. 事实上,如果 $t_{+}<T_{+}$,两种解也重合 $t_{+}$通过连续性。接下来, 考虑具有初始条件的 $\operatorname{IVP} x\left(t_{+}\right)=\phi_1\left(t_{+}\right)=\phi_2\left(t_{+}\right)$表明两个解在邻域重合 $t_{+}$由定理 $2.2$ 。这与最大值相矛盾 $t_{+}$因此 $t_{+}=T_{+}$. 相似地, $t_{-}=T_{-}$. 此外,我们得到一个解决方案
$$
\phi(t)=\left{\phi_1(t), \quad t \in I_1 \phi_2(t), \quad t \in I_2\right.
$$
定义于 $I_1 \cup I_2$. 事实上,这甚至可以扩展到任意数量的解决方案,通过这种方式,我们得到一个定义在某个最大间隔上的(唯一)解决方案。
定理 2.12。假设IVP (2.11) 有一个唯一的同部解(例如唡足定理 $2.5$ 的条件)。那么存在一个定义在某个最大区间上的唯一最大解
$I_{\left(t_0, x_0\right)}=\left(T_{-}\left(t_0, x_0\right), T_{+}\left(t_0, x_0\right)\right)$
备注:如果我们放弃要求 $f$ 是 Lipschitz,我们仍然存在解(见 Theorem 2.18下面),但我们已经知道我们失去了唯一性。即使没有唯一性,IVP (2.11) 的两个给定解 也可以粘合 Logether all $l_0$ (如有必要) 涂上定义的 sululion $I_1 \cup I_2$. 此外,Zorn 引理确保在这种情况下存在最大解。
现在让我们看看如何从给定的解决方案中判断扩展是否存在。

数学代写|常微分方程代写ordinary differential equation代考

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写