如果你也在 怎样代写粒子物理Particle Physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

粒子物理学或高能物理学是对构成物质和辐射的基本粒子和力量的研究。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写粒子物理Particle Physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写粒子物理Particle Physics代写方面经验极为丰富,各种代写粒子物理Particle Physics相关的作业也就用不着说。

我们提供的粒子物理Particle Physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|粒子物理代写Particle Physics代考|PHYS422

物理代写|粒子物理代写Particle Physics代考|Electric Quadrupole Moments

So far, we have assumed that the charge distribution is spherically symmetric. If that were the case we would have

$$
\left\langle x^2\right\rangle=\left\langle y^2\right\rangle=\left\langle z^2\right\rangle=\frac{1}{3}\left\langle r^2\right\rangle,
$$
where
$$
\left.<x^2\right\rangle=\frac{1}{Z e} \int x^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},
$$
$e t c .$
However, for many nuclei this is not the case. They usually still have an axis of symmetry, which we set to be the $z$-axis, so that they are symmetric in the $x-y$ plane but asymmetric in the $x-z$ or $y-z$ planes. In polar coordinates $(r, \vartheta, \phi)$, this means that the charge distribution is a function of the polar angle, $\vartheta$, but for nuclei which still maintain one axis of symmetry (the $z$-axis), the charge distribution is independent of the azimuthal angle, $\phi$.
We can still determine a charge radius
$$
R=\int r \rho(\boldsymbol{r}) d^3 \boldsymbol{r},
$$
even if $\rho(\boldsymbol{r})$ is not a function of the radial component, $r$, alone. However, if we look at the expectation values of the squares of individual component of $\boldsymbol{r}$
$$
\left\langle x^2\right\rangle=\int x^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},\left\langle y^2\right\rangle=\int y^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},\left\langle z^2\right\rangle=\int z^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},
$$
we find that these are not equal. Nuclei which nevertheless have an axis of symmetry have the same values of $\left\langle x^2\right\rangle$ and $\left\langle y^2\right\rangle$, but a different value for $\left\langle z^2\right\rangle$.

物理代写|粒子物理代写Particle Physics代考|Strong Force Distribution

The protons and neutrons inside a nucleus are held together by a strong nuclear force. This has to be strong enough to overcome the Coulomb repulsion between the protons, but unlike the Coulomb force, it extends only over a short range of a few $\mathrm{fm}$.

Electrons are used to probe the charge distribution of the target nuclei, because they interact with the electric field, but not with the strong forces. Likewise, scattering of neutrons from a nucleus can be used to probe the strong force distribution, but not the electric charge distribution since neutrons are uncharged but interact strongly.

As in the case of electron scattering, the cross section of neutron scattering displays a diffraction pattern if the de Broglie wavelength of the neutrons is of the order of the nuclear size. In such a case the wave from different parts of the nucleus interfere to produce diffraction maxima and minima at different scattering angles. This can be seen in Fig. $2.9$ in which neutrons with kinetic energy $14 \mathrm{MeV}$ are scattered from a $\mathrm{Ni}$ (nickel) nucleus. The de Broglie wavelength of neutrons with kinetic energy $14 \mathrm{MeV}$ is approximately $1.2 \mathrm{fm}$ so that the first minimum of the differential cross section, at a scattering angle of $42^{\circ}$, implies an effective radius of the strong force distribution of a few fm. This is similar to the charge radius of the nucleus. We would expect the total nucleon distribution to have the same range as the proton (charge) distribution. However, whereas the Coulomb potential from the nucleus is long-range, being attenuated as the inverse of the distance from the centre of the nucleus, the strong force is rapidly attenuated and becomes negligible after a few $\mathrm{fm}$ trom the nucleus.

The differential cross section can be expressed in terms of a “scattering amplitude”, $f(\theta, \phi)$ (usually a function of the scattering angle, $\theta$, only, but could in some cases depend on the azimuthal angle, $\phi$, of the outgoing particle), via the relation
$$
\frac{d \sigma}{d \Omega}=|f(\theta, \phi)|^2
$$

物理代写|粒子物理代写Particle Physics代考|PHYS422

粒子物理代考

物理代写|粒子物理代写粒子物理代考|电四极矩


到目前为止,我们已经假设电荷分布是球对称的。如果是这样的话,我们将得到

$$
\left\langle x^2\right\rangle=\left\langle y^2\right\rangle=\left\langle z^2\right\rangle=\frac{1}{3}\left\langle r^2\right\rangle,
$$
where
$$
\left.<x^2\right\rangle=\frac{1}{Z e} \int x^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},
$$
$e t c .$
然而,对于许多核来说,情况并非如此。它们通常仍然有一个对称轴,我们将其设置为$z$ -轴,这样它们在$x-y$平面上是对称的,但在$x-z$或$y-z$平面上是不对称的。在极坐标$(r, \vartheta, \phi)$中,这意味着电荷分布是极角$\vartheta$的函数,但对于仍然保持一个对称轴($z$ -轴)的原子核,电荷分布与方子角$\phi$无关。我们仍然可以确定电荷半径
$$
R=\int r \rho(\boldsymbol{r}) d^3 \boldsymbol{r},
$$
,即使$\rho(\boldsymbol{r})$不是径向分量$r$的函数。然而,如果我们观察$\boldsymbol{r}$
$$
\left\langle x^2\right\rangle=\int x^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},\left\langle y^2\right\rangle=\int y^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},\left\langle z^2\right\rangle=\int z^2 \rho(\boldsymbol{r}) d^3 \boldsymbol{r},
$$
各个分量的平方的期望值,我们发现它们是不相等的。有对称轴的原子核有相同的值$\left\langle x^2\right\rangle$和$\left\langle y^2\right\rangle$,但$\left\langle z^2\right\rangle$有不同的值

物理代写|粒子物理代写Particle Physics代考|强力-分布


原子核内的质子和中子被强大的核力结合在一起。它必须足够强,才能克服质子之间的库仑斥力,但与库仑力不同的是,它只在一小段$\mathrm{fm}$ .


电子被用来探测目标原子核的电荷分布,因为它们与电场相互作用,而不与强作用力相互作用。同样,中子从原子核的散射可以用来探测强力分布,但不能用来探测电荷分布,因为中子是不带电的,但相互作用强烈


同电子散射的情况一样,如果中子的德布罗意波长与核大小的数量级相同,中子散射的横截面显示出衍射图样。在这种情况下,来自原子核不同部分的波相互干涉,产生不同散射角下的衍射极大值和最小值。这可以在图中看到。 $2.9$ 其中具有动能的中子 $14 \mathrm{MeV}$ 都是从一个 $\mathrm{Ni}$ (镍)核。具有动能的中子的德布罗意波长 $14 \mathrm{MeV}$ 大概是 $1.2 \mathrm{fm}$ 使微分截面的第一个最小值,在散射角为 $42^{\circ}$,表示强力分布的有效半径为几fm。这与原子核的电荷半径相似。我们期望总核子分布的范围与质子(电荷)分布的范围相同。然而,尽管来自原子核的库仑势是远距离的,衰减为到原子核中心的距离的倒数,强作用力迅速衰减,并在几年后变得可以忽略不计 $\mathrm{fm}$


微分截面可以用一个“散射振幅”来表示,$f(\theta, \phi)$(通常是散射角的函数,$\theta$,但在某些情况下可能依赖于发射粒子的方位角$\phi$),通过关系
$$
\frac{d \sigma}{d \Omega}=|f(\theta, \phi)|^2
$$

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写