assignmentutor-lab™ 为您的留学生涯保驾护航 在代写量子光学Quantum Optics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写量子光学Quantum Optics代写方面经验极为丰富，各种代写量子光学Quantum Optics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|量子光学代写Quantum Optics代考|Maxwell’s Equations in Matter

We continue with our “reading” of Maxwell’s equations in terms of homogeneous and inhomogeneous equations. Apparently, the inhomogeneities of charge and current distributions $\rho, \boldsymbol{J}$ are the means of how the material world “communicates” with the electromagnetic fields. In fact, one of the main reasons why optics and nano optics have seen such a tremendous boost in recent years is the progress in nano and material science. This has brought up numerous novel charge and current sources that allow for an unprecedented control of light-matter interaction. Was it just for the electromagnetic part of Maxwell’s equations, the field of electrodynamics would have probably turned into a completely boring discipline by now.

When dealing with Maxwell’s equations in matter, it is convenient to separate the charge and current distributions into external parts, which can be controlled from the outside, and induced contributions associated with polarizations and magnetizations. The latter can usually not be easily controlled, yet, in presence of matter microscopic polarizations and magnetizations will he induced and will inevitably act back on the fields. Figure $2.5$ gives a brief sketch of the principle underlying this separation. The separation into external and induced contributions is not always completely clear and there is sometimes some freedom of choice what is “external” and what is “induced.”

We next introduce, in close analogy to the charge and current distributions, the polarization $\boldsymbol{P}(\boldsymbol{r}, t)$ as an electric dipole moment per unit volume, and the magnetization $\boldsymbol{M}(\boldsymbol{r}, t)$ as a magnetic dipole moment per unit volume. These quantities account for the material response in presence of electromagnetic fields, and we have to provide a prescription of how they are related to the electromagnetic fields. With $\boldsymbol{P}$ and $\boldsymbol{M}$ we can separate the charge and current distributions into free and bound contributions according to $[1,2]$

## 物理代写|量子光学代写Quantum Optics代考|Linear Materials

For a wide class of materials we can assume a linear relation between the material response and the external fields. More specifically, we get
Linear Materials
$$\boldsymbol{P}=\varepsilon_0 \chi_e \boldsymbol{E}, \quad \boldsymbol{M}=\chi_m \boldsymbol{H} .$$
Here $\chi_e$ and $\chi_h$ are the electric and magnetic susceptibilities, respectively.
Polarization. Let me first discuss the polarization expression. As I would like to argue, there is a strong physical motivation for relating $\boldsymbol{P}$ to the electric field $\boldsymbol{E}$. We first recall that $\boldsymbol{D}$ is an auxiliary field that is solely created by the external charge distribution $\rho_{\text {ext. }}$ If we had erroneously assumed $\boldsymbol{P}=\chi_e \boldsymbol{D}$ (wrong relation), the polarization at a given position would be only due to the external fields. In reality, however, the true field $\boldsymbol{E}$ is the sum of the external field and of the polarization field, which is produced by the entire polarized body under investigation, in agreement to the choice made in Eq. (2.27).
Magnetization. Things are different for the magnetization, which is only induced by the free currents governing $\boldsymbol{H}$. This directly points to the previously mentioned confusion regarding the proper role of $\boldsymbol{B}$ and $\boldsymbol{H}$. Fortunately, things are not as bad as they seem. For practically all materials under study the magnetization is very small, and for this reason the error made through $\boldsymbol{M}=$ $\chi_m \boldsymbol{H}$ is usually negligible in comparison to the arguably more correct choice $\boldsymbol{M}=\chi_m \boldsymbol{B}$ (wrong relation).
We can now continue to establish a relation between $\boldsymbol{D}$ and $\boldsymbol{E}$,
$$\boldsymbol{D}=\varepsilon_0\left(1+\chi_e\right) \boldsymbol{E}=\varepsilon \boldsymbol{E},$$
where we have introduced the permittivity $\varepsilon=\varepsilon_0\left(1+\chi_e\right)$. Similarly, we get
$$\boldsymbol{B}=\mu_0\left(1+\chi_m\right) \boldsymbol{H}=\mu \boldsymbol{H},$$
where we have introduced the permeability $\mu=\mu_0\left(1+\chi_m\right)$. In case of anisotropic materials both $\varepsilon$ and $\mu$ become tensorial quantities, but we will not consider such materials unless stated differently.

# 量子光学代考

## 物理代写|量子光学代写Quantum Optics代考|线性材料

$$\boldsymbol{P}=\varepsilon_0 \chi_e \boldsymbol{E}, \quad \boldsymbol{M}=\chi_m \boldsymbol{H} .$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师