assignmentutor-lab™ 为您的留学生涯保驾护航 在代写风险理论Risk theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写风险理论Risk theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 金融代写|风险理论代写Risk theory代考|Exponential Families and Conjugate Priors

The Poisson-gamma model of Sect. 1 and the exercises are all examples of conjugate priors. By this we mean that the posterior belongs to the same parametric family as the prior. This is defined formally as a class $\Pi^{(0)}$ of densities (for example all Gamma densities) such that both the prior $\pi^{(0}(\theta)$ and the posterior are in $\Pi^{(0)}$.
The main examples of conjugate priors come from exponential families. In its simplest form, an exponential family is a family of densities
$$f_\zeta(x)=\exp \left{\zeta^{\top} \boldsymbol{t}(x)-\kappa(\zeta)\right}$$
w.r.t. some reference measure $\mu(\mathrm{d} x$ ) (e.g., Lebesgue measure or counting measure). Here $x$ is the observed quantity, $\boldsymbol{t}(x) \in \mathbb{R}^p$ a function of $x$ and $\zeta \in \mathbb{R}^p$ a parameter (column) vector. In the following, we shall use a generalized form
$$f_\zeta(x)=\exp \left{\frac{\zeta^{\top} \boldsymbol{t}(x)-\kappa(\zeta)}{\sigma^2 / w}+c\left(x, \sigma^2 / w\right)\right}$$
Here $\omega$ and $\sigma^2$ are to be thought of as constants, not parameters. The interpretation of $w$ is as a weight and of $\sigma^2$ as a dispersion parameter (cf. e.g. the treatment of generalized linear models in SAS).
Example 2.1 For the gamma $(\alpha, \lambda)$ density, we can write
$$\frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x}=\exp {-\lambda x+\alpha \log x+\alpha \log \lambda-\log \Gamma(\alpha)} \cdot x^{-1} .$$
Thus, we are in the framework (2.1) with $\zeta=(-\lambda \alpha)^{\top}, t(x)=(x \log x)^{\top}, \kappa(\zeta)=$ $\alpha \log \lambda-\log \Gamma(\alpha)$ and $\mu(\mathrm{d} x)=x^{-1} \mathrm{~d} x$

The individual premium $H_{\text {Ind }}=\mu(Z)$ is what one ideally would charge, but it is not observable since $Z$ is not so. The Bayes premium $H_{\text {Bayes }}$ is then the optimal premium based on the observations in the sense that it minimizes the mean square error from $H_{\text {Ind. }}$ However, the Bayes premium also has its difficulties: often, the form of the posterior and therefore the expression for $H_{\text {Bayes }}$ is intractable.

The idea of credibility theory is to refrain from looking for the exact Bayes premium $H_{\text {Bayes }}$ defined as the posterior mean, that is, a conditional expectation minimizing the mean square error, but instead restrict attention to linear premium rules. The original reasoning for doing so is that a substantial reduction in computational effort can often be obtained, at a cost of course, namely a larger mean square error. One may, however, note that with today’s computers and the modern method of MCMC (Markov Chain Monte Carlo) general Bayesian calculations have become much more accessible. Nevertheless, credibility is a classical topic in insurance mathematics and so we treat it in some detail.

# 风险理论代考

## 金融代写|风险理论代写Risk theory代考|Exponential Families and Conjugate Priors

Sect 的泊松伽马模型。1和练习都是共轭先验的例子。我们的意思是，后验与先验属于同一个参数族。这被正式定义为密度的类 $\Pi^{(0)}$（例如所有 Gamma 密度），使得先验 $\pi^{(0}(\theta)$ 和后验都在 $\Pi^{(0)}$。

$$f_\zeta(x)=\exp \left{\zeta ^{\top} \boldsymbol{t}(x)-\kappa(\zeta)\right}$$
wrt 一些参考度量 $\mu(\mathrm{d} x$ )（例如，Lebesgue 度量或计数度量）。这里 $x$ 是观测量，$\boldsymbol{t}(x) \in \mathbb{R}^p$ 是 $x$ 的函数，$\zeta \in \mathbb{R}^p$ 是参数（列）向量。下面，我们将使用广义形式
$$f_\zeta(x)=\exp \left{\frac{\zeta^{\top} \boldsymbol{t}(x)-\kappa(\zeta)} {\sigma^2 / w}+c\left(x, \sigma^2 / w\right)\right}$$

$$\frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x}=\exp {-\lambda x+\alpha \log x+ \alpha \log \lambda-\log \Gamma(\alpha)} \cdot x^{-1} 。$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师