如果你也在 怎样代写统计与机器学习Statistical and Machine Learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计学的目的是在样本的基础上对人群进行推断。机器学习被用来通过在数据中寻找模式来进行可重复的预测。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写统计与机器学习Statistical and Machine Learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计与机器学习Statistical and Machine Learning方面经验极为丰富,各种代写机器学习Statistical and Machine Learning相关的作业也就用不着说。

我们提供的统计与机器学习Statistical and Machine Learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|ECE6254

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|Matrix Algebra Review

In this section, we provide the basic elements of linear algebra that are key to understanding the machinery behind the process of building statistical machine learning algorithms.

A matrix is a rectangular arrangement of numbers whose elements can be identified by the row and column in which they are located. For example, matrix $\boldsymbol{E}$, consisting of three rows and five columns, can be represented as follows:
$$
\boldsymbol{E}=\left[\begin{array}{lllll}
E_{11} & E_{12} & E_{13} & E_{14} & E_{15} \
E_{21} & E_{22} & E_{23} & E_{24} & E_{25} \
E_{31} & E_{32} & E_{33} & E_{34} & E_{35}
\end{array}\right]
$$
For example, by replacing the matrix with numbers, we have
$$
\boldsymbol{E}=\left[\begin{array}{ccccc}
7 & 9 & 4 & 3 & 6 \
9 & 5 & 9 & 8 & 11 \
3 & 2 & 11 & 9 & 6
\end{array}\right]
$$
where the element $E_{i j}$ is called the $i j$ th element of the matrix; the first subscript refers to the row where the element is located and the second subscript refers to the column, for example, $E_{32}=2$. The order of an array is the number of rows and columns. Therefore, a matrix with $r$ rows and $c$ columns has an order of $r \times c$. Matrix $\boldsymbol{E}$ has an order of $3 \times 5$ and is denoted as $\boldsymbol{E}_3 \times 5$.

In $\mathrm{R}$, the way to establish an array is through the command matrix(…) with parameters of this function given by matrix (data $=N A$, nrow $=3$, ncol $=5$, byrow = FALSE) where data is the data for the matrix, nrow the number of rows, ncol the number of columns, and byrow is the way in which you will accommodate the data in the matrix by row or column. The data entered by default are FALSE, so they will fill the matrix by columns, while if you specified TRUE, they will fill the matrix by rows.
For example, to build matrix $\boldsymbol{E}$ in $\mathrm{R}$, use the following $\mathrm{R}$ script:
$$
\boldsymbol{E}=\left[\begin{array}{ccccc}
7 & 9 & 4 & 3 & 6 \
9 & 5 & 9 & 8 & 11 \
3 & 2 & 11 & 9 & 6
\end{array}\right]
$$

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|Statistical Data Types

To use statistical learning methods correctly, it is very important to understand the classification of the types of data that exist. This is of paramount importance because data are the input to all statistical machine learning methods and because the data type determines the appropriate and valid analysis to be implemented; in addition, each statistical machine learning method is specific to a certain type of data. In general, data are most commonly classified as quantitative (numerical) or qualitative (categorical) (Fig. 1.4).

By quantitative (numerical) data, we understand that the result of the observation or the result of a measurement is a number. They are classified as
(a) Discrete. The variable can only have point values and no values in between, that is, the variable can only have a certain set of possible values and represent items that can be counted because they only have isolated numerical values. Examples: number of household members, number of surgical interventions, number of reported cases of a certain pathology, number of accidents per month, etc. Examples in the context of plant breeding are panicle number per plant, seed number per panicle, weed count per plot, number of infected spikelets per spike, etc. Also, discrete values are called as count responses and those models based on Poisson and negative binomial distribution are appropriate for this type of responses.

(b) Continuous. They are usually the result of a measurement that is expressed in particular units, and values are measured based on a zero point and are treated as real numbers. There are many types of mathematical operations that can be performed on this type of data. The measurements can theoretically have an infinite set of possible values within a range and they do not need transformation. In practice, the possible values of the variable are limited by the accuracy of the measurement method or by the recording mode. Examples: plant height, age, weight, grain yield, $\mathrm{pH}$, blood cholesterol level, etc. The distinction between discrete and continuous data is important for deciding which statistical learning method to use for the analysis, since there are methods that assume that the data are continuous. Consider, for example, the age variable. Age is continuous, but if it is recorded in years, it turns out to be discrete. In studies with adults, in which the age ranges from 20 to 70 years, for example, there are no problems in treating age as continuous, since the number of possible values is large. But in the case of preschool children, if the age is recorded in years, it should be treated as discrete, while if it is recorded in months, it can be treated as continuous.

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|ECE6254

统计与机器学习代考

统计代写|统计与机器学习作业代写统计和机器学习代考|矩阵代数评论

.


在本节中,我们将提供线性代数的基本元素,这些元素是理解构建统计机器学习算法过程背后的机制的关键


矩阵是数的矩形排列,其元素可以通过所处的行和列来确定。例如,由三行五列组成的矩阵$\boldsymbol{E}$可以表示为:
$$
\boldsymbol{E}=\left[\begin{array}{lllll}
E_{11} & E_{12} & E_{13} & E_{14} & E_{15} \
E_{21} & E_{22} & E_{23} & E_{24} & E_{25} \
E_{31} & E_{32} & E_{33} & E_{34} & E_{35}
\end{array}\right]
$$
例如,用数字替换矩阵,我们有
$$
\boldsymbol{E}=\left[\begin{array}{ccccc}
7 & 9 & 4 & 3 & 6 \
9 & 5 & 9 & 8 & 11 \
3 & 2 & 11 & 9 & 6
\end{array}\right]
$$
,其中元素$E_{i j}$被称为矩阵的$i j$第th元素;第一个下标指向元素所在的行,第二个下标指向列,例如$E_{32}=2$。数组的顺序是行数和列数。因此,具有$r$行和$c$列的矩阵的顺序为$r \times c$。矩阵$\boldsymbol{E}$的顺序为$3 \times 5$,记为$\boldsymbol{E}_3 \times 5$。


在$\mathrm{R}$中,建立数组的方法是通过命令矩阵(…),该函数的参数由矩阵(data $=N A$, nrow $=3$, ncol $=5$, byrow = FALSE)给出,其中data是矩阵的数据,nrow是行数,ncol是列数,byrow是按行或列容纳矩阵中的数据的方式。默认情况下输入的数据为FALSE,因此它们将按列填充矩阵,而如果指定TRUE,它们将按行填充矩阵。
例如,要在$\mathrm{R}$中构建矩阵$\boldsymbol{E}$,使用以下$\mathrm{R}$脚本:
$$
\boldsymbol{E}=\left[\begin{array}{ccccc}
7 & 9 & 4 & 3 & 6 \
9 & 5 & 9 & 8 & 11 \
3 & 2 & 11 & 9 & 6
\end{array}\right]
$$

统计代写|统计与机器学习作业代写统计和机器学习代考|统计数据类型

.


要正确使用统计学习方法,了解现有数据类型的分类是非常重要的。这是至关重要的,因为数据是所有统计机器学习方法的输入,因为数据类型决定了要实现的适当和有效的分析;此外,每种统计机器学习方法都是针对特定类型的数据。一般来说,数据最常被分类为定量(数值)或定性(分类)(图1.4)


通过定量(数值)数据,我们了解到观察的结果或测量的结果是一个数字。它们被分类为
(a)离散。变量只能有点值,中间不能有点值,也就是说,变量只能有一组可能的值,并且表示可以计算的项目,因为它们只有孤立的数值。例如:家庭成员的数量、外科干预的数量、报告的某种病理病例的数量、每月事故的数量等。在植物育种方面的例子有每株穗数、每穗种子数、每田杂草数、每穗感染小穗数等。此外,离散值被称为计数响应,基于泊松和负二项分布的模型适用于这类响应

(b)连续。它们通常是用特定单位表示的测量结果,数值是基于零点测量的,并被视为实数。可以对这类数据执行多种类型的数学运算。理论上,测量可以在一个范围内拥有无限可能的值集,而且它们不需要转换。在实践中,变量的可能值受到测量方法的准确性或记录方式的限制。例如:株高、年龄、重量、产量、$\mathrm{pH}$、血液胆固醇水平等。离散数据和连续数据之间的区别对于决定使用哪种统计学习方法进行分析非常重要,因为有些方法假设数据是连续的。例如,考虑年龄变量。年龄是连续的,但如果以年为单位记录,则是离散的。例如,在年龄从20岁到70岁的成年人的研究中,将年龄视为连续的是没有问题的,因为可能的值的数量很大。但对于学龄前儿童,如果以年为单位记录年龄,则应视为离散,而如果以月为单位记录年龄,则可视为连续

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写