如果你也在 怎样代写热力学thermodynamics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

热力学是对热、功、温度和能量之间关系的研究。热力学定律描述了一个系统中的能量如何变化,以及该系统是否能对其周围环境进行有用的工作。

assignmentutor-lab™ 为您的留学生涯保驾护航 在代写热力学thermodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写热力学thermodynamics代写方面经验极为丰富,各种代写热力学thermodynamics相关的作业也就用不着说。

我们提供的热力学thermodynamics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|热力学代写thermodynamics代考|MECH3024

物理代写|热力学代写thermodynamics代考|VAN DER WAAL’S EQUAIIUN OF SIAIE

van der Waal in 1873 developed an equation of state for real gases in an attempt to correct the equation of state for an ideal gas. At higher pressures, the volume occupied by the gas molecules is no longer negligible. Thus, the molar volume in the ideal gas law is replaced by $(\tilde{v}-b)$. To account for intermolecular attraction, the pressure is written as $p+\frac{a}{\tilde{v}^2}$. The correction term $\frac{a}{\tilde{v}^2}$ for the attractive intermolecular force is based on the fact that it depends on the number of molecules (i.e., the molar density $\rho=\frac{1}{\tilde{v}}$ ) and also the intermolecular distance (which also depends on density $\rho=\frac{1}{\tilde{v}}$ ). Thus, the pressure correction term varies as $\frac{1}{\tilde{v}^2}$ The van der Waal equation of state is thus written as
$$
p+\frac{a}{\tilde{v}^2}=\frac{R_0 T}{\tilde{v}-b}
$$

with $a$ and $b$ to be determined experimentally. The constants $a$ and $b$, however, actually depend on temperature and the values for $a$ and $b$ have to be determined for the particular regions of pressure and temperature of interest.

But since the critical constant temperature line (isotherm) on a $p-\tilde{v}$ diagram has zero slope and curvature at the critical point, we have the conditions
$$
\left.\left.\frac{\partial p}{\partial \tilde{v}}\right){T_c}=0, \frac{\partial^2 p}{\partial \tilde{v}^2}\right){T_c}=0
$$
where $T_C$ denotes the critical temperature, from which the van der Waal coefficients $a$ and $b$ can be evaluated. Using Eqs. $2.19$ and 2.18, we obtain
$$
\begin{aligned}
&\left.\frac{\partial p}{\partial \tilde{v}}\right){T_e}=-\frac{R_0 T_c}{\left(\tilde{v}_C-b\right)^2}+\frac{2 a}{\tilde{v}_C{ }^3}=0 \ &\left.\frac{\partial^2 p}{\partial \tilde{v}^2}\right){T_c}=\frac{2 R_0 T_c}{\left(\tilde{v}_C-b\right)^3}-\frac{6 a}{\tilde{v}_C{ }^4}=0
\end{aligned}
$$
where the subscript ” $c$ ” refers to the critical state. Solving for $a$ and $b$ yields
$$
a=\frac{27}{64} \frac{R_0{ }^2 T_C{ }^2}{p_C}, b=\frac{R_0 T_C}{8 p_C}, \frac{p_C \tilde{v}_c}{R_0 T_C}=\frac{3}{8}
$$
Thus from the critical point data for a given gas, the van der Waal coefficients $a$ and $b$ can be obtained.

Note that Eq. $2.22$ gives $\frac{p_C \tilde{v}_C}{R_0 T_C}=\frac{3}{8}=0.375$, whereas experimentally it is found that $\frac{p_C \tilde{v}_C}{R_0 T_C}$ has values in the range of $0.2-0.3$. It would be more accurate to fit the experimental data in the region of $p$ and $T$ of interest to determine the coefficients $a$ and $b$ rather than using Eq. 2.22. The coefficients $a$ and $b$ for a few gases are given in Table $2.2$.

The van der Waal equation of state is of historical interest since it represents the first attempt to correct the equation of state for an ideal gas taking into account the real gas effects.

物理代写|热力学代写thermodynamics代考|Berthelot and Dieterici Equations of State

There are other two-parameter equations of state where the two constants can similarly be obtained in terms of the critical pressure $p_C$ and temperature $T_C$. Typical examples are the Berthelot and Dieterici equations, that is,
Berthelot : $p=\frac{R_0 T}{\tilde{v}-b}-\frac{a}{T \tilde{v}^2}$
Dieterici : $p=\frac{R_0 T}{\tilde{v}-b} \exp \left(-\frac{a}{R_0 T \tilde{v}}\right)$

The constants $a$ and $b$ in the above equations can be obtained using the critical point conditions given by Eq. $2.19$, to be
$$
a=\frac{27 R_0{ }^2 T_C^2}{64 p_C}, b=\frac{R_0 T_C}{8 p_C}
$$
for the Berthelot equation and
$$
a=\frac{4 R_0{ }^2 T_C{ }^2}{p_C e^2}, b=\frac{R_0 T_C}{p_C e^2}
$$
where $e=2.718$ for the Dieterici equation.
The Berthelot equation corrects for the attractive term in the van der Waal equation when the temperature is high and the kinetic energies of the molecules are large compared to the attractive potential energy. The correction term $\frac{a}{T^2{ }^2}$ would thus diminish with increase of temperature. The Dieterici equation was developed to give better agreement with the quantity $\frac{p_C \tilde{v}_C}{R_0 T_C}$ in Eq. $2.22$ which is in considerable error in the van der Waal equation when compared with experiments.

物理代写|热力学代写thermodynamics代考|MECH3024

热力学代写

物理代写|热力学代写thermodynamics代考|VAN DER WAAL’S EQUAIIUN OF SIAIE

范德瓦尔在 1873 年开发了一个真实气体的状态方程,试图修正理想气体的状态方程。在更高的压力下,气体分子占据的体积不再 可以忽略不计。因此,理想气体定律中的摩尔体积被替换为 $(\tilde{v}-b)$. 为了解释分子间的吸引力,压力写为 $p+\frac{a}{\tilde{v}^2}$ 修正项 $\frac{a}{\tilde{v}^2}$ 因为分 子间吸引力是基于它取决于分子数量 (即摩尔密度 $\rho=\frac{1}{\tilde{v}}$ ) 以及分子间距离 (这也取决于密度 $\rho=\frac{1}{\tilde{v}}$ ) 。因此,压力校正项变化为 $\frac{1}{\tilde{v}^2}$ 范德华状态方程因此写成
$$
p+\frac{a}{\tilde{v}^2}=\frac{R_0 T}{\tilde{v}-b}
$$
和 $a$ 和 $b$ 需通过实验确定。常数 $a$ 和 $b$ ,然而,实际上取决于温度和值 $a$ 和 b必须为感兴趣的压力和温度的特定区域确定。
但由于临界恒温线 (等温线) 在 $p-\tilde{v}$ 图表在临界点的斜率和曲率为零,我们有条件
$$
\left.\left.\frac{\partial p}{\partial \tilde{v}}\right) T_c=0, \frac{\partial^2 p}{\partial \tilde{v}^2}\right) T_c=0
$$
在哪里 $T_C$ 表示临界温度,范德华系数从该温度 $a$ 和 $b$ 可以评价。使用方程式。2.19和 $2.18$ ,我们得到
$$
\left.\left.\frac{\partial p}{\partial \tilde{v}}\right) T_e=-\frac{R_0 T_c}{\left(\tilde{v}_C-b\right)^2}+\frac{2 a}{\tilde{v}_C{ }^3}=0 \quad \frac{\partial^2 p}{\partial \tilde{v}^2}\right) T_c=\frac{2 R_0 T_c}{\left(\tilde{v}_C-b\right)^3}-\frac{6 a}{\tilde{v}_C{ }^4}=0
$$
哪里下标” $c^{\prime \prime}$ 指的是临界状态。解决 $a$ 和 $b$ 产量
$$
a=\frac{27}{64} \frac{R_0^2 T_C^2}{p_C}, b=\frac{R_0 T_C}{8 p_C}, \frac{p_C \tilde{v}_c}{R_0 T_C}=\frac{3}{8}
$$
因此,根据给定气体的临界点数据,范德华系数 $a$ 和 $b$ 可以获得。
请注意,方程式。 $2.22$ 给 $\frac{p C^c C}{R_0 T C}=\frac{3}{8}=0.375$, 而实验发现 $\frac{p C^{\circ} C}{R_0 T C}$ 具有在范围内的值 $0.2-0.3$. 拟合区域内的实验数据会更准确 $p$ 和 $T$

物理代写|热力学代写thermodynamics代考|Berthelot and Dieterici Equations of State

还有其他两参数状态方程,其中两个常数可以类似地根据临界压力获得 $p_C$ 和温度 $T_C$. 典型的例子是 Berthelot 和 Dieterici 方程,即 Berthelot : $p=\frac{R_0 T}{\tilde{v}-b}-\frac{a}{T \tilde{v}^2}$
迪特里奇: $p=\frac{R_0 T}{\tilde{v}-b} \exp \left(-\frac{a}{R_0 T \tilde{v}}\right)$
常数 $a$ 和 $b$ 在上述方程中,可以使用方程给出的临界点条件获得。2.19,成为
$$
a=\frac{27 R_0{ }^2 T_C^2}{64 p_C}, b=\frac{R_0 T_C}{8 p_C}
$$
对于 Berthelot 方程和
$$
a=\frac{4 R_0{ }^2 T_C{ }^2}{p_C e^2}, b=\frac{R_0 T_C}{p_C e^2}
$$
在哪里 $e=2.718$ 对于迪特里奇方程。
当温度较高且分子的动能与吸引势能相比较大时,Berthelot 方程校正了范德华方程中的吸引项。修正项 $\frac{a}{T^{22}}$ 因此会随着温度的升 高而减少。开发了 Dieterici 方程以更好地与数量一致 $\frac{p C^{\circ} C C}{R_0 T C}$ 在等式。2.22与实验相比,范德华方程存在相当大的误差。

物理代写|热力学代写thermodynamics代考 请认准assignmentutor™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

assignmentutor™作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写