assignmentutor-lab™ 为您的留学生涯保驾护航 在代写时间序列分析Time-Series Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写时间序列分析Time-Series Analysis代写方面经验极为丰富，各种代写时间序列分析Time-Series Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|时间序列分析代写Time-Series Analysis代考|FIRST-ORDER AUTOREGRESSIVE PROCESSES

3.8 Although Eq. (3.2) may appear complicated, many realistic models result from specific choices for the $\psi$-weights. Taking $\mu=0$ without loss of generality, choosing $\psi_j=\phi^j$ allows (3.2) to be written as:
\begin{aligned} x_t &=a_t+\phi a_{t-1}+\phi^2 a_{t-2}+\cdots \ &=a_t+\phi\left(a_{t-1}+\phi a_{t-2}+\cdots\right) \ &=\phi x_{t-1}+a_t \end{aligned}
or
$$x_t-\phi x_{t-1}=a_t$$
This is known as a first-order autoregressive process, often given the acronym $\operatorname{AR}(1) .^4$
$3.9$ The lag operator $B$ introduced in $\$ 2.10allows (possibly infinite) lag expressions to be written in a concise way. For example, by using this operator the AR(1) process can be written as: $$(1-\phi B) x_t=a_t$$ so that \begin{aligned} x_t &=(1-\phi B)^{-1} a_t=\left(1+\phi B+\phi^2 B^2+\cdots\right) a_t \ &=a_t+\phi a_{t-1}+\phi^2 a_{t-2}+\cdots \end{aligned} This linear filter representation will converge if|\phi|<1$, which is, therefore, the stationarity condition. 3.10 The ACF of an$\mathrm{AR}(1)$process may now be deduced. Multiplying both sides of (3.3) by$x_{t-k}, k>0$, and taking expectations yields: $$\gamma_k-\phi \gamma_{k-1}=E\left(a_t x_{t-k}\right) .$$ From (3.4),$a_t x_{t-k}=\sum_{i=0}^{\infty} \phi^i a_t a_{t-k-i}$. As$a_t$is white noise, any term in$a_t a_{t-k-i}$has zero expectation if$k+i>0$. Thus (3.5) simplifies to: $$\gamma_k=\phi \gamma_{k-1} \text { for all } k>0$$ and, consequently,$\gamma_k=\phi^k \gamma_0$. An AR(1) process, therefore, has an ACF given by$\rho_k=\phi^k$. Thus, if$\phi>0$the ACF decays exponentially to zero, while if$\phi<0$the ACF decays in an oscillatory pattern, both decays being slow if$\phi$is close to the nonstationary boundaries of$+1$and$-1$. ## 统计代写|时间序列分析代写Time-Series Analysis代考|FIRST-ORDER MOVING AVERAGE PROCESSES 3.12 Now consider the model obtained by choosing$\psi_1=-\theta$and$\psi_j=0$,$j \geq 2$, in (3.2): $$x_t=a_t-\theta a_{t-1}$$ Or $$x_t=(1-\theta B) a_t$$ This is known as the first-order moving average (MA(1)) process and it follows immediately that:${ }^5$$$\gamma_0=\sigma^2\left(1+\theta^2\right) \quad \gamma_1=-\sigma^2 \theta \quad \gamma_k=0 \text { for } k>1$$ and, hence, its$\mathrm{ACF}$is described by $$\rho_1=-\frac{\theta}{1+\theta^2} \quad \rho_k=0 \text { for } k>1$$ Thus, although observations one period apart are correlated, observations more than one period apart are not, so that the memory of the process is just one period: this “jump” to zero autocorrelation at$k=2$may be contrasted with the smooth, exponential decay of the ACF of an$\operatorname{AR}(1)$process. 3.13 The expression for$\rho_1$can be written as the quadratic equation$\rho_1 \theta^2+\theta+\rho_1=0$. Since$\theta$must be real, it follows that$\left|\rho_1\right|<0.5{ }^6{ }^6$However, both$\theta$and$1 / \theta$will satisfy this equation, and thus, two MA(1) processes can always be found that correspond to the same ACF. 3.14 Since any MA model consists of a finite number of$\psi$-weights, all MA models are stationary. To obtain a converging autoregressive representation, however, the restriction$\theta<1$must be imposed. This restriction is known as the invertibility condition and implies that the process can be written in terms of an infinite autoregressive representation: $$x_t=\pi_1 x_{t-1}+\pi_2 x_{t-2}+\cdots+a_t$$ where the$\pi$-weights converge:$\sum_{j=1}^{\infty}\left|\pi_j\right|<\infty$. In fact, the$\mathrm{MA}(1)$model can be written as: $$(1-\theta B)^{-1} x_t=a_t$$ and expanding$(1-\theta B)^{-1}$yields $$\left(1+\theta B+\theta^2 B^2+\cdots\right) x_t=a_t .$$ The weights$\pi_j=\theta^j$will converge if$|\theta|<1$; in other words, if the model is invertible. This implies the reasonable assumption that the effect of past observations decreases with age. # 时间序列分析代考 ## 统计代写|时间序列分析代写Time-Series Analysis代考|FIRST-ORDER AUTOREGRESSIVE PROCESSES 尽管式(3.2)可能看起来很复杂，但许多现实模型都是由$\psi$-权重的特定选择产生的。在不丧失一般性的情况下取$\mu=0$，选择$\psi_j=\phi^j允许(3.2)被写成: \begin{aligned} x_t &=a_t+\phi a_{t-1}+\phi^2 a_{t-2}+\cdots \ &=a_t+\phi\left(a_{t-1}+\phi a_{t-2}+\cdots\right) \ &=\phi x_{t-1}+a_t \end{aligned} $$x_t-\phi x_{t-1}=a_t$$ 这被称为一阶自回归过程，通常给出首字母缩写\operatorname{AR}(1) .^43.9$在$\$2.10$中引入的滞后算符$B$允许(可能是无限的)滞后表达式以简洁的方式被写出来。例如，通过使用这个算子，AR(1)过程可以写成:
$$(1-\phi B) x_t=a_t$$

\begin{aligned} x_t &=(1-\phi B)^{-1} a_t=\left(1+\phi B+\phi^2 B^2+\cdots\right) a_t \ &=a_t+\phi a_{t-1}+\phi^2 a_{t-2}+\cdots \end{aligned}

$$\gamma_k-\phi \gamma_{k-1}=E\left(a_t x_{t-k}\right) .$$
From (3.4)， $a_t x_{t-k}=\sum_{i=0}^{\infty} \phi^i a_t a_{t-k-i}$。因为$a_t$是白噪声，如果$k+i>0$, $a_t a_{t-k-i}$中的任何项都是零期望。因此(3.5)简化为:
$$\gamma_k=\phi \gamma_{k-1} \text { for all } k>0$$
，因此，$\gamma_k=\phi^k \gamma_0$。因此，AR(1)进程具有$\rho_k=\phi^k$给出的ACF。因此，如果$\phi>0$ ACF指数衰减到零，而如果$\phi<0$ ACF以振荡模式衰减，如果$\phi$接近$+1$和$-1$的非平稳边界，两者衰减都很慢。

## 统计代写|时间序列分析代写Time-Series Analysis代考|FIRST-ORDER移动平均过程

$$x_t=a_t-\theta a_{t-1}$$

$$x_t=(1-\theta B) a_t$$

$$\gamma_0=\sigma^2\left(1+\theta^2\right) \quad \gamma_1=-\sigma^2 \theta \quad \gamma_k=0 \text { for } k>1$$
，因此，它的$\mathrm{ACF}$被描述

$$\rho_1=-\frac{\theta}{1+\theta^2} \quad \rho_k=0 \text { for } k>1$$因此，虽然相隔一个周期的观察是相关的，但相隔超过一个周期的观察是不相关的，因此过程的记忆只是一个周期:在的“跳跃”到零自相关 $k=2$ 可以与平滑的，指数衰减的ACF的 $\operatorname{AR}(1)$ 3.13 for的表达式 $\rho_1$ 可以写成二次方程吗 $\rho_1 \theta^2+\theta+\rho_1=0$。自从 $\theta$ 一定是真的吗 $\left|\rho_1\right|<0.5{ }^6{ }^6$ 然而，两者 $\theta$ 和 $1 / \theta$ 满足这个方程，因此，总能找到两个MA(1)过程对应同一个ACF $\psi$-权重，所有的MA模型都是平稳的。然而，为了得到收敛的自回归表示，限制 $\theta<1$ 必须强制执行。这个限制被称为可逆性条件，它意味着这个过程可以写成一个无限的自回归表示:
$$x_t=\pi_1 x_{t-1}+\pi_2 x_{t-2}+\cdots+a_t$$
where the $\pi$-权重收敛: $\sum_{j=1}^{\infty}\left|\pi_j\right|<\infty$。事实上， $\mathrm{MA}(1)$ 模型可以写成:
$$(1-\theta B)^{-1} x_t=a_t$$

$$\left(1+\theta B+\theta^2 B^2+\cdots\right) x_t=a_t .$$

## 有限元方法代写

assignmentutor™作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

assignmentutor™您的专属作业导师
assignmentutor™您的专属作业导师